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1. Abstract
In order to understand the image formation inside plenoptic
systems, a wave-optic-based model is proposed in this paper that
uses the Fresnel diffraction equation to propagate the whole object
field into the plenoptic systems. The proposed model is much
flexible at sampling on propagation planes by utilizing the method
of multiple partial propagations. In order to verify the effectiveness
of the proposed model, numerical simulations are conducted by
comparing with existing wave optic model under different optical
configurations of plenoptic cameras. Results demonstrate that the
proposed model can describe the light field image formation
properly. In addition, the time for image formation has been
reduced by a factor of 19.22 using the proposed model.
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Wave analysis is performed in [11]. In the formulas, paraxial approximation
is exploited and lenses are assumed to be thin and aberration-free.
According to [11], the intensity at the sensor plane is given by:

However, this kind of image formation is time-consuming since the impulse
responses needs to be obtained point-by-point to satisfy incoherent imaging.

2.2. Proposed wave optic model
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The distances among 
the optical component 
planes satisfy the 
Gaussian equation, 
which are given by
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Considering the time cost, we proposed a wave optic model that propagates
the whole object field to the sensor plane simultaneously. In order to
decrease the coherence during propagation, the proposed model applies
random transmittance screens to the object field.

Illustration of the proposed wave optic propagation model
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The object field is now modeled as
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For the sake of having more flexibility in selecting the grids on the observation 
plane, the proposed model adopts the method of multiple partial propagation 
provided by Schmidt [16] that introduces “middle” planes between the source 
plane and the observation plane.

Simulation results for a 23×23 array of lenslets. (b) and (d) are the in-focus
and close-to-focus cropped plenoptic sensor data obtained by using the wave
optic model in [11]; (c) and (e) are the corresponding results obtained by using
the proposed model. The SSIMs are 0.9295 and 0.9158, respectively.
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The scaling parameter is determined by the location of the “middle” plane, 
it is adjustable as the location changes. This leads to the flexibility of grid 
spacing on the observation plane.
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The object field is propagated into the plenoptic system utilizing Fresnel
propagation equation and the process is repeated N1 times with different
realizations of phase. The intensities are averaged to produce the final
incoherent result.
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