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Distributed optimization

I Network with n nodes. Each node i has access to local function fi (x)

I Collaborate to minimize global objective ⇒ f (x) =
n∑

i=1

fi (x)

⇒ Sample subsets to train classifier
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I Nodes can operate (train or estimate) locally but would benefit by sharing

⇒ Cost of aggregating functions is large ⇒ Comms and computation

I Recursive exchanges with neighbors j ∈ Ni to aggregate global information
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Methods for distributed optimization

I Replicate common variable at each node ⇒ f (x1, . . . , xn) =
n∑

i=1

fi (xi )

I Enforce equality between neighbors xi = xj (thus between all nodes)
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I Operate recursively to enforce equality asymptotically. Differ on how.

⇒ Distributed gradient descent, recursive averaging, [Nedic, Ozdaglar ’09]

⇒ Distributed dual descent, prices, [Rabbat et al ’05]

⇒ Distributed ADMM, prices, [Schizas et al ’08]

I DADMM is the best in terms of comm. cost ⇒ Computationally costly
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Methods for distributed optimization

I Replicate common variable at each node ⇒ f (x1, . . . , xn) =
n∑

i=1

fi (xi )

I Enforce equality between neighbors xi = xj (thus between all nodes)
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I Operate recursively to enforce equality asymptotically. Differ on how.

⇒ Distributed gradient descent, recursive averaging, [Nedic, Ozdaglar ’09]

⇒ Distributed dual descent, prices, [Rabbat et al ’05]

⇒ Distributed ADMM, prices, [Schizas et al ’08]

I DADMM is the best in terms of comm. cost ⇒ Computationally costly
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DQM: Approximate DADMM

I DADMM: a primal-dual method that minimizes an augmented Lagrangian

I The primal update of DADMM is computationally expensive

I DQM resolves this issue by approximating the DADMM primal update

I DQM uses a quadratic approximation of the global objective function

I This approximation leads to a quadratic program ⇒ computationally cheap

⇒ with minimal effect on convergence properties
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Problem formulation

I n nodes, m edges as E = {(i , j)| i can comm. to j}, (i , j) ∈ E ⇔ (j , i) ∈ E

I Problem in distributed form ⇒ min
x1,...,xn

n∑
i=1

fi (xi ), s.t. xi = xj , for (i , j) ∈ E

I With the auxiliary variables zij associated with edge (i , j) ∈ E

{x∗i }ni=1 := argmin
x1,...,xn

n∑
i=1

fi (xi ),

s. t. xi = zij , xj = zij , for all (i , j) ∈ E .

I Try to separate the variables xi
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Vector form representation

I Rewrite the problem formulation in vector form

⇒ Aggregate variables x := [x1; . . . ; xn] and z := [z1; . . . ; zm]

⇒ Aggregate function f (x) = f (x1, . . . , xn) =
∑n

i=1 fi (xi )

I Therefore, the problem can be written as

x∗ := argmin
x

f (x), s. t. Ax + Bz = 0.

I A = [As ;Ad ] ∈ R2mp×np stacks the source As and destination Ad matrices

I B = [−I;−I] ∈ R2mp×mp stacks two negative identity matrices of size mp

I ADMM can be used to solve the optimization problem
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DADMM: Decentralized ADMM

I The augmented Lagrangian of min
x

f (x), s. t. Ax + Bz = 0 is

L(x, z,λ) := f (x) + λT (Ax + Bz) +
c

2
‖Ax + Bz‖2 .

I λ is the dual variable and c > 0.

I The DADMM update at step k:

⇒ Step 1: xk+1 = argmin
x

f (x) + λT
k (Ax + Bzk) +

c

2
‖Ax + Bzk‖2

⇒ Step 2: zk+1 = argmin
z

f (xk+1) + λT
k (Axk+1 + Bz) +

c

2
‖Axk+1 + Bz‖2

⇒ Step 3: λk+1 = λk + c (Axk+1 + Bzk+1)

I Steps 2 and 3 are not costly in terms of computation time

I Step 1 can be computationally expensive ⇒ no closed form solution
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DQM: Decentralized Quadratically Approximated ADMM

I DQM reduces computational complexity of the primal update

⇒ Using a quadratic approximation of f (x) around xk

I The DQM update at step k:

⇒ Step 1: xk+1 = argmin
x

f (xk) +∇f (xk)T (x− xk) +
1

2
(x− xk)THk(x− xk)

+ λT
k (Ax + Bzk) +

c

2
‖Ax + Bzk‖2

⇒ Step 2: zk+1 = argmin
z

f (xk+1) + λT
k (Axk+1 + Bz) +

c

2
‖Axk+1 + Bz‖2

⇒ Step 3: λk+1 = λk + c (Axk+1 + Bzk+1)

I Step 1 is a quadratic program ⇒ has a closed form solution

I This recursion is useful for analyzing convergence of DQM
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DQM global update

Proposition

Consider Lu as the unoriented Laplacian, Lo as the oriented Laplacian, and
D := (Lu + Lo)/2 as the degree matrix. By choosing proper initial variables,
the DQM iterates xk can be generated as

xk+1 = (2cD + Hk)−1 [(cLu + Hk)xk −∇f (xk)− φk ] ,

φk+1 = φk + cLoxk+1.

I These recursions are simpler

⇒ Eliminate the auxiliary variables zk

⇒ Reduce the dimensionality of λk ∈ R2mp to that of φk ∈ Rnp

I How to implement these updates in a decentralized fashion?
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DQM local update

I DQM global update can be implemented in a decentralized fashion

I Consider xi,k and φi,k as the iterates of node i at step k

I DQM local primal update at node i

xi,k+1 =
(

2cdi I +∇2fi (xi,k)
)−1[

cdixi,k +c
∑
j∈Ni

xj,k +∇2fi (xi,k)xi,k−∇fi (xi,k)−φi,k

]
I DQM local dual update at node i

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1) .
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DQM Algorithm at node i

(0) Initialize the local iterates xi,0 and φi,0. Repeat for times k = 0, 1, . . .

(1) Update the primal local iterate xi,k as

xi,k+1 =
[
2cdi I +∇2fi (xi,k)

]−1[
cdixi,k+c

∑
j∈Ni

xj,k+∇2fi (xi,k)xi,k−∇fi (xi,k)−φi,k

]
(2) Exchange iterates xi,k+1 with neighbors j ∈ Ni .

(3) Update the local dual variable φi,k as

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1) .
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Assumptions

Assumption 1

I The local objective functions fi (x) are twice differentiable

I The Hessians ∇2fi (x) have bounded eigenvalues mI � ∇2fi (x) � MI

Assumption 2

I The local Hessians are Lipschitz continuous

⇒ ‖∇2fi (x)−∇2fi (x̂)‖ ≤ L‖x− x̂‖

Assumption 3

I The graph is connected and non-bipartite
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Linear convergence of DQM

I Consider the vector u :=

[
z
λ

]
, and PD matrix C :=

[
cImp 0

0 (1/c)Imp

]

Theorem

Consider the DQM method and let all the mentioned assumptions hold. Then,
DQM converges linearly

‖uk+1 − u∗‖2C ≤
1

1 + δk
‖uk − u∗‖2C

where the sequence of positive scalars δk is increasing and given by

δk = min

{
(µ− 1)(cγ2

u − ηkζk)γ2
o

µµ′(cΓ2
uγ2

u + 4ζ2k/c(µ′ − 1))
,

m − ζk/ηk
cΓ2

u/4 + µM2/cγ2
o

}
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DQM vs DADMM

Theorem [Shi et al ’14]

The sequence of iterates generated by DADMM converges linearly as

‖uk+1 − u∗‖2C ≤
1

1 + δ
‖uk − u∗‖2C

where δ = min

{
(µ− 1)γ2

o

µΓ2
u

,
m

cΓ2
u/4 + µM2/cγ2

o

}
is a positive constant.

Proposition

As time passes, the linear convergence factor δk of DQM approaches the
DADMM linear convergence factor δ.

lim
k→∞

δk = δ

I The asymptotic linear rate of DQM is equal to the linear rate of DADMM
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Numerical results

I We consider a logistic regression problem ⇒ each node has q samples

I The graph is connected and random with connectivity ratio rc = 0.4

I DLM ⇒ a first order approx. of DADMM + proximal term

I First case ⇒ n = 10 nodes and q = 5 samples per node
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I DQM converges as fast as DADMM in terms of number of iterations

I In terms of convergence time DQM � DADMM � DLM
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Numerical results

I Second case ⇒ n = 100 nodes and q = 20 samples per node
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I DLM (first-order method) is impractical in terms of communication cost

I DQM convergence rate is identical to the convergence rate of DADMM

I DQM outperforms both DLM and DADMM in terms of convergence time
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Conclusions

I Introduced a network optimization formulation

⇒ Each agent has local cost function fi

⇒ Global cost f =
∑n

i=1 fi

I DQM is proposed as a second-order distributed method

⇒ Approximates the global cost by its second-order approximation

I Linear convergence is established

I Linear convergence factor of DQM approaches the one for DADMM

I DQM computational cost is significantly lower than DADMM

I Numerical experiments verify the theoretical results

⇒ DQM converges as fast as DADMM in terms of communication cost

⇒ DQM runtime to achieve a target accuracy is less than DADMM
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