Joint Modeling of Accents and Acoustics for Multi-Accent Speech Recognition

Contribution

Dealing with speaker accent mismatch by exploring an alternate model where we **jointly** learn an accent classifier and a multitask acoustic model.

- Experiments on two accents: Wall Street Journal American and British English
- Our **Joint** model **outperforms** the strong multi-accent acoustic model (\mathbf{MTLP}) by relative WER improvements: **5.94%** on British English.
- 9.47% on American English.

Introduction

ASR systems have achieved human parity on Switchboard [1, 2], but still perform **much worse** than human speech recognition when meeting accents.

Figure 1: Comparison of WERs between DeepSpeech2 and crowd-sourced human recognition [3] on VoxForge. Deep-Speech2 is trained on 11,940 hours English speech.

Accent Variations in a Language:

- Associated with the residence, ethnicity, social class, and native language of speakers.
- Distinguished by traits of phonology, grammar, and vocabulary.

Pronunciation	British	American
SCH EDULE	[ˈ∫ɛdjuːl]	[ˈskɛdʒʊl]
DRESS	$[\varepsilon]$ (England)	[e]
	[e] (Wales)	

*The author is currently in Google.

*University of Illinois at Urbana-Champaign,

Related Work

- Hierarchical grapheme and phoneme based acoustic modeling [4]: outperformed accent specific models but achieved competitive WER with multi-accent phoneme models.
- Adaptive multi-accent phoneme based acoustic modeling [5]: trained a multi-accent phoneme model and adapted it with a target accent.

Methods

Human Accented Speech Perception:

Humans memorize the phonological and phonetic forms of accented speech: "mental representations of phonological forms are extremely detailed," and include "traces of individual voices or types of voices" [6].

Pipeline Model with AID:

Figure 2: **Pipelines:** acoustic model (AM) is selected based on the hard-switch between accent specific acoustic models.

Figure 3: **AID:** accent identification with average pooling.

Figure 4: MTLP: multi-accent phoneme based acoustic model using connectionist temporal classification (CTC) loss.

Figure 5: Joint: we proposed to link the training of acoustic models and accent identification models in a manner similar to the linking of these two learning processes in human speech perception.

Xuesong Yang^{*}, Kartik Audhkhasi[†], Andrew Rosenberg[†], Samuel Thomas[†], Bhuvana Ramabhadran^{†*}, Mark Hasegawa-Johnson^{*}

[†]IBM T.J. Watson Research Center

$$\min_{\Theta} \mathcal{L}_{\mathsf{AM}}(\Theta) = 0.5 * \mathcal{L}_{\mathsf{UK}}(\Theta) + 0.5 * \mathcal{L}_{\mathsf{US}}(\Theta)$$

 $\min_{\Theta} \mathcal{L}_{\mathsf{Joint}}(\Theta) = (1 - \alpha) * \mathcal{L}_{\mathsf{AM}}(\Theta) + \alpha * \mathcal{L}_{\mathsf{AID}}(\Theta)$

[1] W. Xiong et al., "Toward human parity in conversational speech recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 12, pp. 2410–2423, 2017. [2] G. Saon et al., "English conversational telephone speech recognition by humans and machines," Proc. of Interspeech 2017, pp. 132–136, 2017 [3] D. Amodei et al., "Deep speech 2: End-to-end speech recognition in english and mandarin," in International Conference on Machine Learning, pp. 173-182, 2016. [4] K. Rao et al., "Multi-accent speech recognition with hierarchical grapheme based models," in Proc. of ICASSP, pp. 4815–4819, IEEE, 2017. [5] J. Yi et al., "Ctc regularized model adaptation for improving lstm rnn based multi-accent mandarin speech recognition," in Proc. of ISCSLP, pp. 1-5, IEEE, 2016. [6] J. Pierrehumbert, "Phonological representation: Beyond abstract versus episodic," Annu. Rev. Linguist., vol. 2, pp. 33–52, 2016.

Speech Corpora:

Results:

Table 1: Oracle performance in WER (rel. imp.) that assumes the true accent ID is known in advance. The relative improvement is calculated over **ASpec**.

Table 2: Real task performance in WER (rel. imp.) that assumes the true accent ID is not known in advance. The relative improvement is calculated over **ASpec**. **Pipelines** model applies AID trained separately while **Joint** model applies AID jointly trained with **MTLP**.

Experiments

• Train: WSJ American English (42 phones) and Cambridge British English (45 phones), 15 hours speech recordings for each accent.

• Test: American English (eval93) and British English (si_dt5b)

• **ASpec:** accent specific AMs that are trained separately on corresponding mono-accent data. • **MTLP:** multi-accent AMs that are jointly trained in a way of multitask learning. • Joint: our proposed acoustic model that explicitly includes accents information.

rpus	ASpec	MTLP	Joint
ritish	11.5	10.1 (-12.17)	9.5 (-17.39)
erican	10.2	9.0 (-11.76)	8.3 (-18.63)
erage	10.85	9.55 (-11.98)	8.9 (-17.97)

us	Pipelines with AID		T • 1	Joint
	ASpec	MTLP	Joint	v.s. MTLP
h 11.5	10.1	9.5	9.5	
	(-12.17)	(-17.39)	(-5.94)	
ean 11.1	9.5	8.6	8.6	
	(-14.41)	(-22.52)	(-9.47)	