EVALUATING MULTIEXPOSURE FUSION USING IMAGE INFORMATION Hisham Rahman, Rajiv Soundararajan, and R. Venkatesh Babu

Multiexposure Fusion (MEF)

- Consumer cameras have low dynamic range (LDR)
- Natural scenes often contain high dynamic range (HDR)
- Capturing HDR scenes with LDR cameras result in over/under-exposed images

(a) Under-exposed image

Combining over/under-exposed images to obtain a single image - Multiexposure fusion

Several MEF algorithms are available [Metens2007], [Raman2009]

(c) Mertens, 2007

(d) Raman, 2009

We need to differentiate good and bad images automatically - Quality Assessment (QA) of Multiexposure Fusion Can be useful in tuning the performance of MEF algorithms

Quality Assessment of MEF

- No true reference available for quality computation
- Not a blind QA problem since ground truth is contained and spread over over/under exposed images
- Challenge: Estimate reference from the under/over exposed images

Indian Institute of Science, Bengaluru, India

index

processing, vol. 24, no. 11, November 2015

Quality map fusion model

- source images

Main contribution

- model
- Structural similarity metric (SSIM) quality map fusion using image information

- SSIM based pairwise quality map
- Quality map mixing using image information
- Local contrast based weighting

E. P. Simoncelli and W. T. Freeman, "The steerable pyramid: A flexible architecture for multi-scale derivative computation," Proc. IEEE Int. Conf. Image Proc., pp. 444-447, Oct 1995

quality map fusion methods

Lighthouse

Madison capitol

Memorial

Office

Tower

Venice

Average

• Our QA model achieves state of the art performance, and much better performance for Landscape and Office sequences

Conclusion

- Future work Develop QA algorithms for dynamic scenes

 $SSIM_{l,k}(i,j) = \frac{2\sigma_{t-l,k}(i,j) + C_2}{\sigma_{t,k}^2(i,j) + \sigma_{l,k}^2(i,j) + C_2}$

Structure and contrast computed in multiscale multiorientation subbands

HVS
$$\rightarrow C_{l,k}$$

Figure: Perceptual model for bandpass coefficients in input image

$$\dot{\sigma}(i)) = \frac{1}{2} \log_2 \left(\frac{|\hat{s}_{l,k}^2(i,j)\mathbf{K}_{U_{l,k}} + \sigma_w^2 \mathbf{I}|}{|\sigma_w^2 \mathbf{I}|} \right)$$

Pick SSIM at each location corresponding to input image with maximum information

 $FQ_k(i,j) = SSIM_{l^*,k}(i,j), \text{ where } l^*(i,j,k) = \arg\max I(\vec{C}_{l,k}(i,j); \vec{C'}_{l,k}(i,j)|\hat{s}_{l,k}(i,j))$ $l \in \{1, 2, ..., L\}$

$$FQ_k(i,j)$$
 $Q = \prod_{k=1}^K (Q_k)^{\beta_k}$

► MEF Quality Assessment Database [Ma2015] - 17 source image sequences

Table: Spearman Rank Order Correlation Coefficient between subjective and objective scores

osed model	[Ma '15]	[Xydeas '00]	[Piella '03]
0.9048	0.8333	0.6667	0.4524
0.9940	0.9701	0.7785	0.467
0.9762	0.9762	0.7857	0.4048
0.9048	0.9286	0.9762	0.5476
0.8333	0.8333	0.7143	0.5714
0.9762	0.9286	0.6905	0.5238
0.9048	0.9286	0.7381	0.2857
0.8333	0.8571	0.5952	0.4048
0.9762	0.7857	0.2619	0.1190
0.8571	0.7143	0.7619	0.5476
0.8571	0.5238	0.0238	0.1429
0.8571	0.8810	0.5000	0.0714
0.8571	0.8810	0.5238	0.4762
0.9048	0.8571	0.7619	0.6667
0.9519	0.7832	0.2771	0.4579
0.9048	0.9524	0.5714	0.5714
0.9701	0.9341	0.9102	0.3114
0.9096	0.8570	0.6198	0.4131

Our method does much better than [Xydeas '00] and [Piella '03], which are also

Show that quality map fusion does as well as feature map fusion [Ma2015]

