

MACHINE LOAD ESTIMATION VIA STACKED AUTOENCODER REGRESSION Tulika Bose¹, Angshul Majumdar² and Tanushyam Chattopadhyay¹

> ¹TCS Research and Innovation, Tata Consultancy Services, Kolkata, India ²Indraprastha Institute of Information Technology, Delhi, India ¹{tulika.bose, t.chattopadhyay }@tcs.com ²angshul@iiitd.ac.in

MOTIVATION

- To estimate axial and spindle load in a Computer Numerical Control machine from input sensor readings like spindle speed, feed rate, surface speed etc. – a standard regression problem.
- To develop a data driven approach for load estimation as an alternative to physics based models, which is not always feasible due to complicated manufacturing systems dynamics.
- To learn arbitrary relationships between the load and sensor readings.

Architecture of the proposed Asymmetric Stacked Autoencoder for Regression

Day	Axis	Perf. metric	Linear Regres sion	LASSO	SVR- Polyn omial	SVR- Gaussian	Traditional SAE	Regression using model proposed
4-Apr	Axis 3	NMSE	0.1208	0.1231	0.1307	0.1308	0.1204	0.1162
		RMSE	5.0349	5.1313	7.0871	7.0864	5.0163	4.8417
4-Apr	Axis 4	NMSE	0.8018	0.8026	0.9593	0.9717	0.98	0.6579
		RMSE	4.9956	5.0007	6.188	6.1863	6.1061	4.0995
7-Apr	Axis 1	NMSE	0.6343	0.6353	0.6841	0.6852	0.7132	0.5842
		RMSE	5.1879	5.1959	6.1761	6.1635	5.8331	4.4397
7-Apr	Spin -dle	NMSE	0.8675	0.8806	0.9978	0.999	0.9809	0.8141
		RMSE	7.1641	7.2726	8.2515	8.2523	8.101	6.7231
12-Apr	Axis 3	NMSE	0.1082	0.1082	0.1168	0.1185	0.1026	0.1001
		RMSE	4.4554	4.4554	6.0906	6.0639	4.2260	4.1199

PROPOSED APPROACH

- Incorporated a regression model based on the Stacked Autoencoder framework with joint learning of encoder-decoder and regression weights in a more optimal fashion, instead of greedy layer wise training in two phases.
- Regression model built on top of an asymmetric autoencoder architecture to reduce overfitting.
- Formulated a *joint optimization problem* and solved it using a variable splitting Augmented Lagrangian approach.

Methodology

Step 1: Proposed regression model is formulated as non-convex joint optimization function,

Step 3: Equation 2 is broken into smaller sub-problems using Alternating Direction Method of Multipliers (ADMM) and the encoder-decoder and regression weights are learnt in multiple iterations. This concludes training.

Step 4: During testing, the unknown output \tilde{y} for test data X_{test} can be estimated using the learned weights by solving $\tilde{y} = w^T \varphi(W_{E_2} \varphi(W_{E_1} X_{test}))$

EXPERIMENTS AND RESULTS

A CNC turning machine

Proposed model (nmse :0.1689, rmse:4.43333) and Linear Regression (nmse :0.1728, rmse:4.5357)

Proposed model (nmse :0.1273, rmse:5.3421) and Linear Regression (nmse :0.1343, rmse:5.6389)

a) Load in axis 1 on 17 Apr (b) Load in axis 3 on 17 Apr

Observations

- Consistent improvement in performance compared to other techniques.
- Signal peaks could be better estimated using the proposed

Step 2: Two proxy variables are introduced :

 $Z_2 = \varphi(W_{E_2}\varphi(W_{E_1}X))$ and $Z_1 = \varphi(W_{E_1}X)$ and the eq 1 is reformulated into corresponding Augmented Lagrangian formulation:

 $\sup_{\substack{W_{E_{1}}, W_{E_{2}}, W_{D}, w, Z_{1}, Z_{2} \\ (2)} \left(\begin{aligned} \|X - W_{D}Z_{2}\|_{F}^{2} + \lambda \|y - w^{T}Z_{2}\|_{F}^{2} \\ + \mu_{2} \|Z_{2} - \varphi(W_{E_{2}}Z_{1})\|_{F}^{2} \\ + \mu_{1} \|Z_{1} - \varphi(W_{E_{1}}X)\|_{F}^{2} \end{aligned} \right)$

Axes names	λ	μ_1	μ_2					
Axis 1	1.6	1.3	1.3					
Axis 2	0.5	1.7	1.7					
Axis 3	0.6	1.6	1.6					
Axis 4	1.1	1.5	1.5					
Spindle	0.7	1.6	1.6					

Parameter values considered for experiments using the proposed regression model

Performance metrics: $NMSE = \frac{\|y - \tilde{y}\|_2}{\|y - \tilde{y}\|_2}$

$$NMSE = \frac{\|y - y\|_2}{\|y\|_2}$$

$$RMSE = \sqrt{\frac{\sum_{m=1}^{N} (y_m - \tilde{y}_m)^2}{N}}; N = length(y)$$

model.

The model can be used for any regression problem.

REFERENCES

[1] D.Y. Pimenov, "Mathematical modeling of power spent in face milling taking into consideration tool wear," Journal of Friction and Wear, vol. 36, no. 1, pp. 45–48, 2015.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep networks," in Advances in neural information processing systems, 2007, pp. 153–160.

[3] A. Majumdar and A. Tripathi, "Asymmetric stacked autoencoder," in Neural Networks (IJCNN), 2017 International Joint Conference on. IEEE, 2017, pp. 911–918.

[4] K.O. J"ornsten, M. N"asberg, and P.A. Smeds, "Variable splitting: A new Lagrangean relaxation approach to some mathematical programming models", University of Link" oping, Department of Mathematics, 1985.

₽ -+