
EXPERIMENTS AND RESULTS

A CNC turning machine 

Axes
names

Axis 1 1.6 1.3 1.3

Axis 2 0.5 1.7 1.7

Axis 3 0.6 1.6 1.6

Axis 4 1.1 1.5 1.5

Spindle 0.7 1.6 1.6

Parameter values considered for experiments 
using the proposed regression model

Step 2: Two proxy variables are introduced :

and 
and the eq 1 is reformulated into 

corresponding Augmented Lagrangian formulation: 

(2)

MOTIVATION

n To estimate axial and spindle load in a Computer  
Numerical Control machine from input sensor 
readings like spindle speed, feed rate, surface 
speed etc. – a standard regression problem.

n To develop a data driven approach for load 
estimation as an alternative to physics based 
models, which is not always feasible due to 
complicated manufacturing systems dynamics.

n To learn arbitrary relationships between the load 
and sensor readings.

PROPOSED  APPROACH

è Incorporated a regression model based on the 
Stacked Autoencoder framework with joint learning 
of encoder-decoder and regression weights in a more 
optimal fashion, instead of greedy layer wise training 
in two phases.

è Regression model built on top of an asymmetric 
autoencoder architecture to reduce overfitting.

è Formulated a  and solved  joint optimization problem
it using a variable splitting Augmented Lagrangian 
approach.

Methodology

Step 1: Proposed regression model is formulated as 
non-convex joint optimization function, 
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MACHINE LOAD ESTIMATION VIA 
STACKED AUTOENCODER REGRESSION

(a)
Proposed model (nmse :0.1689, rmse:4.43333) and Linear Regression (nmse :0.1728, rmse:4.5357)
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(b)
Proposed model (nmse :0.1273, rmse:5.3421) and Linear Regression (nmse :0.1343, rmse:5.6389)
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a) Load in axis 1 on 17 Apr (b) Load in axis 3 on 17 Apr

Observations
n Consistent improvement in performance compared 

to other techniques.

n Signal peaks could be better estimated using the proposed 
model.

n The model can be used for any regression problem.
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12-AprStep 3: Equation 2 is broken into smaller sub-problems 
using Alternating Direction Method of Multipliers (ADMM) 
and the encoder-decoder and regression weights are 
learnt in multiple iterations. This concludes training.

Step 4: During testing, the unknown output     for test data 
X   test    can be estimated using the learned weights by 
solving

(1)
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Performance metrics:

Architecture of the proposed Asymmetric Stacked Autoencoder 
for Regression


