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Yedrouj-Net: An efficient CNN for spatial steganalysis
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Yedroudj-Net comparison with two other steganalysis approaches based on deep learning (fair comparison).
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Yedroudj-Net:
1. It has the advantage of using 30 SRM kernels which increases the diversity.
2. A shallow network compared to the Ye-Net equipped with a “value clipper” (hard tanh) activation function.
. 3. Thanks to batch normalization, Yedroudj-Net converges faster and 1s more robust with respect to hyperparameters.
Results Conclusions
1. Clairvoyant protocol: Comparison of Yedroudj-Net and three state-of-the-art steganalysis * An efficient approach based on deep learning
methods in terms of steganalysis robablllt r o (CNN) for ste o analy SiS.
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D e G e e Comparison of Yedroudj-Net’s and two state-of-the-art steganalysis’s
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