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Introduction 
 

What is Matrix Completion? 

 
The aim is to recover a low‐rank matrix given only a subset 

of its possibly noisy entries, e.g., 
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Why Matrix Completion is Important? 

 

It is a core problem in many applications including: 
 recommendation systems 

 Image inpainting and restoration 

 Sensor network 

 Path loss map reconstruction 

 

Many real-world signals can be approximated by a matrix 
whose rank is . 

 

Netflix problem, whose goal was to accurately predict 
user preferences with a database of over 100 million 

movie ratings made by 480,189 users in 17,770 films, 
which corresponds to the task of completing a matrix with 

around 99% missing entries. 
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How to Recover an Incomplete Matrix? 

 

Matrix completion is to find a matrix , which is an 
estimate of , given  with the use of low‐rank 

information of , which can be mathematically formulated 

as a noise-free version: 

 
 

or noisy version: 

 

 

where  is a subset of the complete set of entries , 

with  being the list . But the rank minimization 

problem is NP-hard. 
 



ICASSP 2018                                                                                    Page 6                                                               Apr. 2018 

A popular and practical solution is to replace the nonconvex 

rank by convex nuclear norm: 

 
   

or 
 

 

where  equals the sum of singular values of . However, 

complexity of nuclear norm minimization is still high and 
this approach is not robust when  contains outliers. 
 

Matrix Completion as a Feasibility Problem 
 

We formulate matrix completion with noise-free entries as: 
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where an estimate or true value of rank  is needed. 

 
 Low-rank constraint:  

 Fidelity constraint:   

  

With Gaussian noise, the fidelity constraint is modified as: 
 

 

To achieve robustness against outliers, the problem is 

formulated as: 
 

 

 

The robust feasibility problem can be rewritten as: 

 



ICASSP 2018                                                                                    Page 8                                                               Apr. 2018 

 

where the rank constraint set is: 
 

  

 

and the fidelity constraint set is: 
 

 

where  

 

is element‐wise ‐norm which is robust to outliers if . 

 
Remarks: 
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  is a generalization as  

reduces to noise-free version while  reduces to 

conventional scenario of handling Gaussian noise. 

 

Alternating Projection Algorithm 
 

The proposed alternating projection algorithm (APA) is 

outlined in Algorithm 1: 
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According to Eckart‐Young theorem, the projection of  

onto  can be computed via truncated singular value 

decomposition (SVD) of : 

 

   

 
where , , and  are the  largest 

singular values and the corresponding left and right singular 

vectors of , respectively.  

 
Note that  is an ‐ball and the projection onto ‐ball has 

closed-form solution in the following three cases: 
 

 : the fidelity constraint reduces to equality 

constraint. 
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  and : the projection is derived as the closed‐

form expression of the projection onto the ‐ball. 

 
  and : the projection onto ‐ball can be solved 

by soft-thresholding operater. 

  
Note that  also involves the projection onto a 

convex ‐ball, which is not difficult to solve but requires 

an iterative procedure.  
 
As  is more robust than  in the presence of 

outliers, the latter case will not be considered. 

 
 We prove that if initial point is close enough to , 

then APA locally converges to  at a linear rate. 
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Numerical Examples 
 
Noise‐free  of rank  is generated by the product 

of  and  whose entries satisfy standard 

Gaussian distribution, where , , and . 

 

45% of the entries of  are randomly selected as the 

known observations. 

 

Impulsive noise is modelled by two-term Gaussian mixture 

model (GMM) whose PDF is 

 

 

 

Normalized root mean square error (RMSE) is defined as: 
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Figure 1: Normalized RMSE versus iteration number. 
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Figure 2: Normalized RMSE versus SNR. 
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Figure 3: Normalized RMSE versus estimated rank. 
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Concluding Remarks 
 
 The key idea is to formulate matrix completion as a 

feasibility problem, where a common point of the low-

rank constraint set and fidelity constraint set is found by 

alternating projection. 

 
 The fidelity constraint set is modelled as an -ball, where 

 or , which results in closed-form projection. 

 

 The APA achieves robustness against Gaussian noise and 
outliers, with  and , respectively. 

 

 There is no stepsize within the framework of APA. 
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 The APA is conceptually simpler and computationally 

more efficient than the popular nuclear norm 

minimization approaches. 
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