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Abstract

To leverage the spatial relationship of lattice data, such
as images, we introduce total variational (TV) regulariza-
tion into support vector machines (SVM), called TV-SVM.
TV-SVM encourages local smoothness and sparsity in gra-
dient domain of the learned parameters. TV-SVM is op-
timized via the alternating direction method of multipliers
(ADMM) algorithm and is significantly better than (Lin-
ear) SVM for image classifications.

The Problem of SVM

Typically, SVM contains a hinge loss function and an L2 reg-
ularization. Given a set of training data {xi, yi}ni=1, where
xi ∈ Rd and yi ∈ {−1, 1}, SVM is formulated as:

min
w,b

1
2
wTw + C

n∑
i=1

[1− yi(wTxi + b)]+ (1)

Notice that each input xi must be represented as a vector.
However, some kinds of real-world data are naturally repre-
sented as matrices (images) or even tensors (videos).
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Figure: Reshape a matrix into a vector.

When matrices or tensors are reshaped into vectors, their spa-
tial relationships are partially destroyed. Thus the spatial in-
formation is not successfully considered in SVM.

Low-rank Solutions

To deal with the above issue, several methods have been pro-
posed

• rank-k SVM →W is the sum of k rank-1 matrices
• bilinear SVM →W is factorized into two low-rank

matrices
• SMM → adds the nuclear norm of W as a regularization

term
Nuclear norm introduced by Support Matrix Machine (SMM)
is an approximation of matrix rank. Thus, all those methods
are based on the low-rank assumption of W, i.e. the rows or
columns are highly correlated.
For natural image classification, the low-rank assumption may
suffer problems. Rank is sensitive to rotations, but an image
classification algorithm is required to be insensitive to rota-
tions.
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(a) Low-rank
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(b) High-rank
Figure: Rank is sesitive to rotations.

Total Variation

In this work, the TV-norm for 2D discrete signal is defined as
LTV (X) = ∑

i,j
|Xi+1,j −Xi,j| + |Xi,j+1 −Xi,j| (2)

where X ∈ Rm×n is the input matrix. LTV can be also repre-
sented as linear operators combined with standard L1 norm.

LTV (X) = ‖Dxx‖1 + ‖Dyx‖1 (3)
where x is the vector representation of X. Dx and Dy are
the so-called 2D forward differentiation operators in x-direction
and y-direction, respectively. For simplicity, let D = [Dx;Dy],
then (3) is rewritten as:

LTV (X) = ‖Dx‖1 (4)
Then the spatial relationships of images are carried on D.

TV-SVM

To take the advantage of the local smooth assumption and
restrain the regression matrix W to be sparse in the gradi-
ent domain, we introduce TV regularization of W into SVM,
instead of low-rank regularization.

min
W,b

1
2
tr(WTW) + τLTV (W) + C

n∑
i=1

[1− yi(tr(WTXi) + b)]+
(5)

Denote x and w are the vector representations of X and W.
Then, TV-SVM can also be represented as vectorized form:

min
w,b

1
2
wTw + τ |Dw|1 + C

n∑
i=1

[1− yi(wTxi + b)]+ (6)

It is equivalent to the following problem:
arg min

w,b,z
f (w, b) + g(z) s.t. z − w = 0 (7)

f (w, b) = 1
2
wTw + C

n∑
i=1

[1− yi(wTxi + b)]+ (8)

g(z) = τ |Dz|1 (9)
Because both f and g are convex, the whole problem is opti-
mized by fast ADAM algorithm. In each iteration, (wk, bk) is
solved in a similar way as SVM and zk is solved via an opti-
mized taut-string method.

Fast ADMM for TV-SVM

Initialize z−1 = z̃0, u−1 = ũ0, ρ = 1, t1 = 1, c0 = 0 and
η ∈ (0, 1)
for k = 1, 2, 3... do
(wk, bk) = arg min

w,k
f (w, b) + ρ

2
‖z̃k − w + ũk‖2

2

zk = arg min
z
g(z) + ρ

2
‖z − wk + ũk‖2

2

uk = uk + ρ(zk − wk)
ck = 1

ρ‖u
k − ũk‖2

2 + ρ‖zk − z̃k‖2
2

if ck < ηck−1 then

tk+1 = 1 +
√√√√1 + 4(tk)2

2
z̃k+1 = zk + tk − 1

tk+1 (zk − zk−1)

ũk+1 = uk + tk − 1
tk+1 (uk − uk−1)

else
tk+1 = 1
z̃k+1 = zk−1, ũk+1 = uk−1

ck = ck−1

η
end if

end for

Experiments

Method INRIA person CIFAR-10 IG02
Time Accuracy Time Accuracy Time Accurcy

L-SVM - 80.12 - 67.60 - 72.91
SMM 42.21 81.98 15.40 68.62 11.62 73.68

TV-SVM 42.87 82.99 14.79 68.23 11.80 73.86
Table: Training time (second) and classification accuracy (%). There 2114
samples (160× 90) on INRIA person, 2037 samples (32× 32) on CIFAR-10,
and 785 samples (90× 120) on IG02.

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) L-SVM

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) SMM

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) TV-SVM
Figure: Normalized W learned from CIFAR-10.
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