Abstract

To leverage the spatial relationship of lattice data, such

as images, we introduce total variational (TV) regulariza-
tion into support vector machines (SVM), called TV-SVM.

TV-SVM encourages local smoothness and sparsity in gra-
dient domain of the learned parameters. TV-SVM is op-
timized via the alternating direction method of multipliers

(ADMM) algorithm and is significantly better than (Lin-
ear) SVM for image classifications.

The Problem of SVM

Typically, SVM contains a hinge loss function and an Ls reg-
ularization. Given a set of training data {x;,y;}",, where
r; € RYand y; € {—1,1}, SVM is formulated as:
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mwlgl QwTw + Cél[l —y;(whz; + b))+ (1)
Notice that each input x; must be represented as a vector.
However, some kinds of real-world data are naturally repre-
sented as matrices (images) or even tensors (videos).
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Figure: Reshape a matrix into a vector.
When matrices or tensors are reshaped into vectors, their spa-

tial relationships are partially destroyed. Thus the spatial in-
formation is not successtully considered in SVM.

Low-rank Solutions

To deal with the above issue, several methods have been pro-
posed

= rank-k SVM — W is the sum of k rank-1 matrices

= bilinear SVM — W is factorized into two low-rank
matrices

» SMM — adds the nuclear norm of W as a regularization
term

Nuclear norm introduced by Support Matrix Machine (SMM)
is an approximation of matrix rank. Thus, all those methods
are based on the low-rank assumption of W, i.e. the rows or
columns are highly correlated.

For natural image classification, the low-rank assumption may
suffer problems. Rank is sensitive to rotations, but an image
classification algorithm is required to be insensitive to rota-
tions.
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Figure: Rank is sesitive to rotations.

Total Variation

In this work, the T'V-norm for 2D discrete signal is defined as

Lrv(X) = x| Xivj — Xijl + [ Xiga = Xyl (2)
where X € R"”*" is the input matrix. Lpy can be also repre-

sented as linear operators combined with standard L; norm.
Lry(X) = || Dex|[1 + [[ Dy |y (3)

where x is the vector representation of X. D, and D, are
the so-called 2D forward differentiation operators in x-direction
and y-direction, respectively. For simplicity, let D = [D,; D,],
then (3) is rewritten as:

Lry(X) = || D], (4)

Then the spatial relationships of images are carried on D.

TV-SVM

To take the advantage of the local smooth assumption and
restrain the regression matrix W to be sparse in the gradi-
ent domain, we introduce TV regularization of W into SVM,
instead of low-rank regularization.

W 2

(5)
Denote x and w are the vector representations of X and W.

Then, TV-SVM can also be represented as vectorized form:

1 n
nin waTw + 7| Dwl; + Cigl[l —yi(w'z; +b)],  (6)

It is equivalent to the following problem:

Arg Imin fw,b)+g(z) st.z—w=0 (7)

f(w,b) = ;wTw + Cél[l — y;(w' z; + b))+ (8)

g(z) = 7| Dz, (9)
Because both f and g are convex, the whole problem is opti-
mized by fast ADAM algorithm. In each iteration, (wy, by) is

solved in a similar way as SVM and z;, is solved via an opti-
mized taut-string method.

Fast ADMM for TV-SVM
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Experiments
Vethod INRIA person CIFAR-10 1G02
Time Accuracy Time Accuracy Time |Accurcy
L-SVM - 80.12 - 67.60 - 72.91

SMM 142.21 81.98 | 1540 68.62 11.62 73.68
TV-SVM| 42.87 | 82.99 14.79 68.23 | 11.80 73.86

1 n
Wi tr(W W) + 7Ly (W) + C £ [1 - yi(tr(W' X;) + )]+

Table: Training time (second) and classification accuracy (%). There 2114
samples (160 x 90) on INRIA person, 2037 samples (32 x 32) on CIFAR-10,
and 785 samples (90 x 120) on 1G02.
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Figure: Normalized W learned from CIFAR- 10.
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