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1. Introduction 2. Overall Architecture

Different types of inputs CNN-with 2D or 3D conv

®Goal : ® Two stream framework: ’ e
Find the best way to perform the end-to-end feature learning for face spoof detection task. . y %%%% % —
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®Key issue : ®First stream: “ : f L
How to exploit the temporal domain and how to combine the temporal domain scheme with single or stacked region(s) of raw images (
CNN for this particular task. 4 types of temporal models ' — [N °
®Proposed method: %].r'f i -
We compare schemes on the raw data in single stream and fusion methods with optical flow in | |®S€cond stream:

LSTM or Conv-LSTM

optical flow in face region

two streams. Fig. 1. Overview of different structures to perform

feature learning for face spoof detection.

3. INVESTIGATION ON DIFFERENT STRUCTURES IN SPATIAL-TEMPORAL DOMAIN

® 3.3 Optical flow stream and fusion strategies for two

®3.1 2D or 3D convolution @32 LSTM or Conv-LSTM
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Fig. 2. Comparison between 2D and 3D conv. The normal 2D LSTM takes feature vector x, from the GAP layer in CNN at Fig. 3. Optical flow feature demonstration. The first row is the
conv is shown on the left, and 3D conv is shown on the right. time t. x,corresponds only to the image at time t because CNN results for attack faces and the second row is for the real one. We
uses the single face region as Iits Input in this case. The output of show both horizontal and vertical components in the flow.
LSTM is h,which will be used as a feature vector for the final
3D[11] conv extends 2D conv by sliding not only in 2D spatial decision. Th_e _ceII State ig represented by vector ¢, .There are also|®@Fusion strategies OO_pt!caI flow stream
vectors specified by the input, forget and output gate represented | 1)Concatenate vectors Similar to CNN-LSTM method

domain, but also along the channel direction.

by i; , f; and o;. Details of Conv-LSTM can be found in [13]. 2)Train a 4-2 FC layer
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