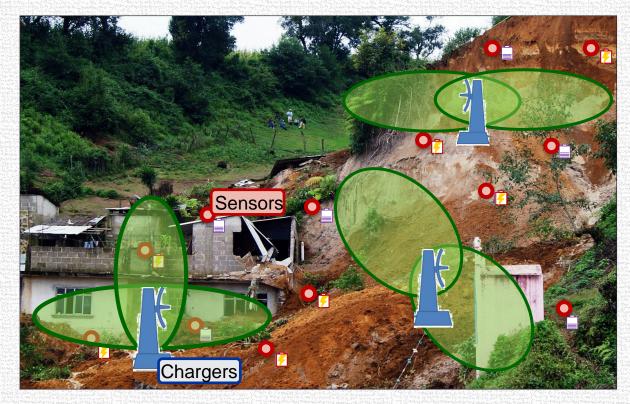
Wireless Power Transfer for Distributed Estimation in Wireless Passive Sensor Networks

> Teng-Cheng Hsu and Y.-W. Peter Hong National Tsing Hua University

Wireless Power Transfer in WSNs



- Wireless sensor networks (WSNs) have applications in, e.g., environmental monitoring, disaster recovery ... etc.
- Bottleneck: Limited battery capacity!
- Wireless power transfer (WPT) allows sensors to be conveniently charged over-the-air whenever needed.

Related Works and Main Contribution

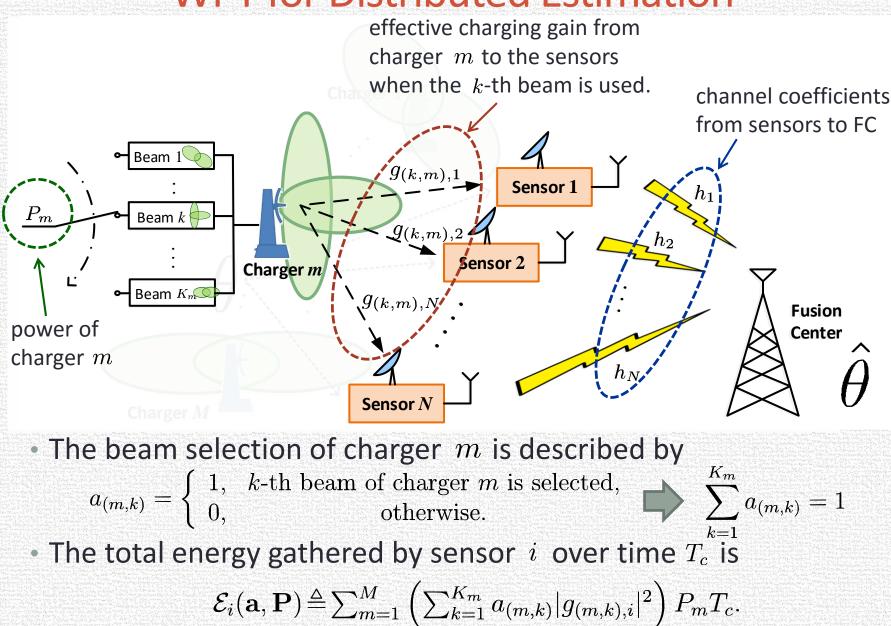
Related Works:

Beamforming designs for WPT:

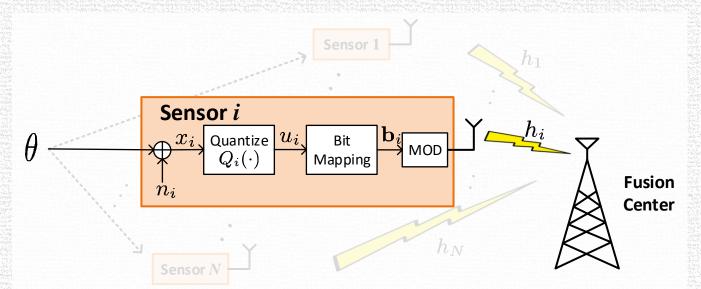
- Maximize energy harvested by users [Son & Clerckx '14]
- ✓ Maximize uplink throughput [Liu *et al.*, 2014] [Ju & Zhang, '14]
- ✓ Maximize minimum rate of users [Yang et al. '15]
- WPT in the context of WSNs:
 - ✓ Packet delay and packet loss probability [Wu & Yang '15]
 - Charging scheduling of mobile chargers [Xie et al. '12]
 - ✓ Charger deployment [He et al., 2013]
- ➔ Optimize communication-related performance metrics.

Main Objective: Determine the beam selection and power allocation at the chargers with cross-layer consideration on the *distributed estimation error*.

WPT for Distributed Estimation



Sensor Observation and Data Processing



• The observation at sensor i is

$$x_i = \theta + n_i$$

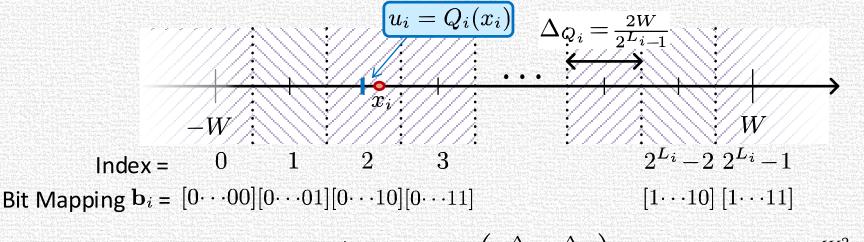
where $\theta \sim \mathcal{N}(0, \sigma_{\theta}^2)$ is the parameter of interest and $n_i \sim \mathcal{N}(0, \sigma_{n_i}^2)$ is the observation noise.

Data processing at sensor i:

$$x_i \xrightarrow{\text{quantized}} u_i = Q_i(x_i) \xrightarrow{\text{bit mapping}} \mathbf{b}_i = [b_{i,1}, \dots, b_{i,L_i}]$$

Digital Forwarding at the Sensor

Uniform Quantization & Natural Bit Mapping:



→ Quantization error is
$$\epsilon_i \triangleq u_i - x_i \sim \mathcal{U}\left(-\frac{\Delta_{Q_i}}{2}, \frac{\Delta_{Q_i}}{2}\right)$$
 and, thus, $\sigma_{\epsilon_i}^2 = \frac{W^2}{3(2^{L_i}-1)^2}$

• BPSK Modulation: The transmitted signal is

$$\mathbf{s}_i = [s_{i,1}, \dots, s_{i,L_i}] = \sqrt{\frac{\mathcal{E}_i(\mathbf{a}, \mathbf{P})}{L_i}} (2\mathbf{b}_i - 1)$$

where $\mathcal{E}_i(\mathbf{a}, \mathbf{P})$ is the energy available at sensor $i, \mathbf{a} \triangleq [a_{(1,1)}, a_{(2,1)}, \dots, a_{(1,K_1)}, \dots, a_{(M,1)}, \dots, a_{(M,K_M)}]^T$ is the beam selection vector, and $\mathbf{P} \triangleq [P_1, P_2, \dots, P_M]^T$ is the power allocation among chargers.

Parameter Estimation at the Fusion Center (FC)

By considering BPSK modulation, the received signal at FC is

$$\mathbf{r}_i = h_i \mathbf{s}_i + \mathbf{w}_i = h_i \sqrt{\frac{\mathcal{E}_i}{L_i}} (2\mathbf{b}_i - 1) + \mathbf{w}_i,$$

where $\mathbf{w}_i \sim \mathcal{N}(\mathbf{0}, \sigma_{w_i}^2 \mathbf{I}_{L_i})$ is the channel noise vector.

• The reconstruction of sensor *i*'s observation is

$$y_i = \left[2\left(\sum_{l=1}^{L_i} \hat{b}_{i,l} 2^{L_i - l} + 1\right) - 1 - 2^{L_i}\right] \frac{\Delta_{Q_i}}{2}$$

where $\hat{\mathbf{b}}_i = [\hat{b}_{i,1}, \dots, \hat{b}_{i,L_i}]$ is the detected bit vector.

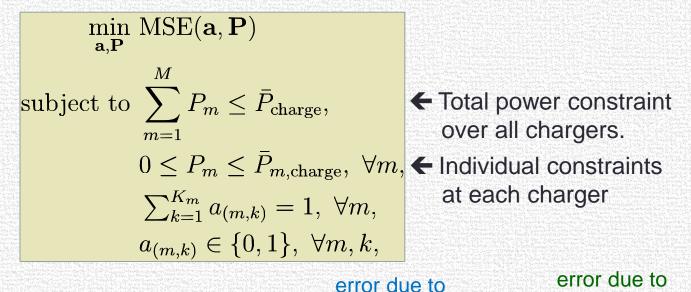
By taking the linear MMSE estimator, the estimate at FC is

 $\hat{\theta} = \mathbf{C}_{\theta \mathbf{y}} \mathbf{C}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y}$ where $\mathbf{y} \triangleq [y_1, y_2, \dots, y_K]^T$, $\mathbf{C}_{\theta \mathbf{y}} \triangleq E[\theta \mathbf{y}^T]$, and $\mathbf{C}_{\mathbf{y}\mathbf{y}} \triangleq E[\mathbf{y}\mathbf{y}^T]$. \rightarrow The corresponding MSE is

$$MSE(\mathbf{a}, \mathbf{P}) \triangleq E[|\theta - \hat{\theta}|^2] = \sigma_{\theta}^2 - \mathbf{C}_{\theta \mathbf{y}} \mathbf{C}_{\theta \mathbf{y}}^{-1} \mathbf{C}_{\theta \mathbf{y}}^T.$$

Beam Selection and Power Allocation

The MSE minimization problem can be formulated as



• The MSE can be upper bounded by $\mathbf{quantization}$ transmission $MSE(\mathbf{a}, \mathbf{P}) \leq 2 \min_{\mathbf{k} \in \mathbb{R}^N} E[|\theta - \mathbf{k}^T \mathbf{u}|^2] + E[|\mathbf{k}^T \mathbf{u} - \mathbf{k}^T \mathbf{y}|^2]$ $= 2[\sigma_{\theta}^2 - C_{\theta \mathbf{u}}(C_{\mathbf{u}\mathbf{u}} + C_{(\mathbf{u}-\mathbf{y})(\mathbf{u}-\mathbf{y})})^{-1}C_{\theta \mathbf{u}}^T]$ where $\mathbf{u} \triangleq [Q(x_1), \dots, Q(x_N)]^T$ is vector of quantized observations, $\mathbf{y} \triangleq [y_1, \dots, y_N]^T$ is the vector of reconstructed values at FC, and $C_{\mathbf{ab}} \triangleq E[\mathbf{ab}^T]$ is the covariance matrix between vectors \mathbf{a} and \mathbf{b} .

Approximations of the MSE Upper Bound

Assumptions:

- 1) Independence of noise n_i and quantization error ϵ_i .
- 2) High SNR such that $\Pr(\hat{b}_{i,\ell} \neq b_{i,\ell}) = \mathcal{Q}\left(\sqrt{\frac{|h_i|^2 \mathcal{E}_i(\mathbf{a},\mathbf{P})}{L_i \sigma_{w_i}^2}}\right) \ll 1$

• The MSE upper bound can be approximated as

$$MSE(\mathbf{a}, \mathbf{P}) \leq 2[\sigma_{\theta}^{2} - tr(\mathbf{C}_{\theta \mathbf{u}}(\mathbf{C}_{\mathbf{u}\mathbf{u}} + \mathbf{C}_{(\mathbf{u}-\mathbf{y})(\mathbf{u}-\mathbf{y})})^{-1}\mathbf{C}_{\theta \mathbf{u}}^{T})]$$
$$\approx 2\left[\sigma_{\theta}^{2} - \frac{\sum_{i=1}^{N} \{\mathbf{D}\}_{i,i}^{-1}}{1 + \sigma_{\theta}^{2} \sum_{i=1}^{N} \{\mathbf{D}\}_{i,i}^{-1}}\right] \triangleq \overline{MSE}(\mathbf{a}, \mathbf{P}),$$

where \mathbf{D} is a diagonal matrix with

$$\{\mathbf{D}\}_{i,i} = \sigma_{n_i}^2 + \frac{W^2}{3(2^{L_i-1})} + \frac{W^2(4^{L_i+1}-1)}{3(2^{L_i}-1)^2} \mathcal{Q}\left(\sqrt{\frac{|h_i|^2 \mathcal{E}_i(\mathbf{a},\mathbf{P})}{L_i \sigma_{w_i}^2}}\right).$$

N

Consequently,

$$\min_{\mathbf{a},\mathbf{P}} \text{MSE}(\mathbf{a},\mathbf{P}) \Rightarrow \min_{\mathbf{a},\mathbf{P}} \overline{\text{MSE}}(\mathbf{a},\mathbf{P}) \equiv \max_{\mathbf{a},\mathbf{P}} \sum_{i=1}^{-1} \{\mathbf{D}\}_{ii}^{-1}$$

Approximation Problem Formulation

The MSE minimization problem can be approximated as

$$\max_{\mathbf{a},\mathbf{P}} \sum_{i=1}^{N} \left(c_{i,1} + c_{i,2} \mathcal{Q} \left(\sqrt{\frac{|h_i|^2 \sum_{m=1}^{M} P_m T_c \sum_{k=1}^{K_m} a_{(m,k)} |g_{(m,k),i}|^2}{L_i \sigma_{w_i}^2}} \right) \right)^{-1}$$
subject to
$$\sum_{m=1}^{M} P_m \leq \bar{P}_{charge}$$

$$0 \leq P_m \leq \bar{P}_{m,charge}, \forall m,$$

$$\sum_{k=1}^{K_m} a_{(m,k)} = 1, \quad a_{(m,k)} \in \{0,1\}, \quad \mathbf{Relaxed as}$$

$$0 \leq a_{(m,k)} \leq 1$$

where
$$c_{i,1} = \sigma_{n_i}^2 + \frac{W^2}{3(2^{L_i-1})}$$
 and $c_{i,2} = \frac{W^2(4^{L_i+1}-1)}{3(2^{L_i}-1)^2}$

- Solved by an alternating optimization algorithm, i.e.,
 - 1) Given $\mathbf{P} = \mathbf{P}^{(\ell)}$, find $\mathbf{a} = \mathbf{a}^{(\ell+1)}$.
 - 2) Given $\mathbf{a} = \mathbf{a}^{(\ell+1)}$, find $\mathbf{P} = \mathbf{P}^{(\ell+1)}$.
 - 3) Repeat 1) and 2) until no significant increase in the objective. Take $\mathbf{a}^*_{m,k} = 1$ if $a_{m,k}^{(\infty)} > a_{m,k'}^{(\infty)}$, $\forall k'$, and 0, otherwise. Solve for \mathbf{P}^* given \mathbf{a}^* .

Optimization of a Given $\mathbf{P} = \mathbf{P}^{(\ell)}$

• Given $\mathbf{P} = \mathbf{P}^{(\ell)}$, we optimize a by solving

• Similarly, for solving **P** with given $\mathbf{a} = \mathbf{a}^{(\ell+1)}$.

Exploration of Channel State Information

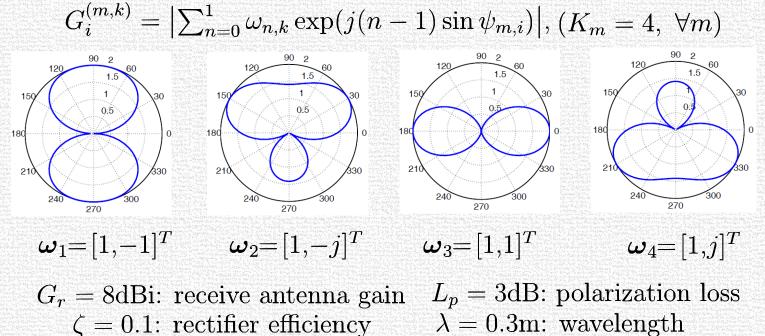
Exploration Phase	Replenishment and Transmission Phase]
Sensor Exploration	Sensor	Sensor		Sensor	Sensor	1
Channel Estimation	Charging	Transmission	•••	Charging	Transmission	
			≜			•
Beam Selection & S		isor Par	ameter	Ser	isor Pai	ameter
Charging Power Allocation		Sensing Esti		Ser	nsing Est	imation

Exploration Phase:

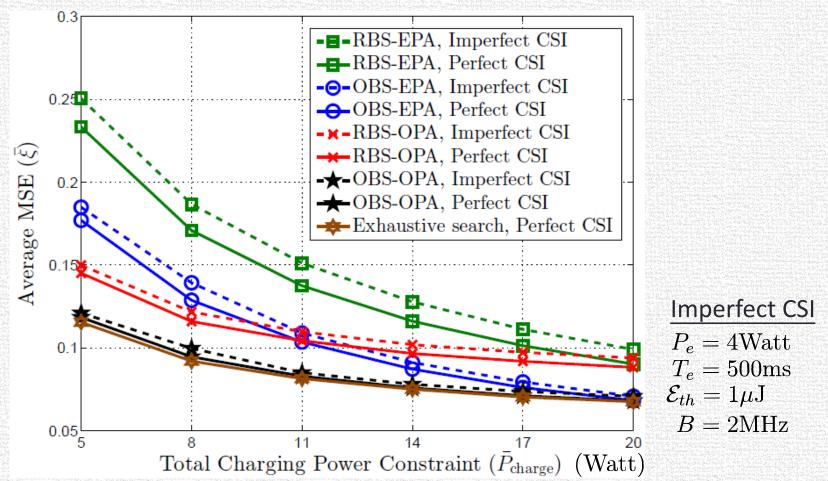
- 1) Each charger emits power P_e in turn with all of its beams.
- 2) If the harvested energy by a certain sensor exceeds a given threshold \mathcal{E}_{th} , it immediately emits a pilot signal to the FC.
- 3) The FC estimates the charging gain $|g_{(m,k),i}|^2$ by the arrival time of the pilot signal and estimates the fading coefficient h_i by using the received pilot signal.
- 4) CSI of sensors not responding by time T_e are set to 0.
- ✓ Higher \mathcal{E}_{th} → less explored sensors; smaller estimation error.

Simulation Environment

- N = 20 sensors and M = 5 chargers in 50m-by-50m square area
- Let $d_{s,i}$, d_i , and $d_{m,i}$ be the distance between sensor *i* and the event, FC, and charger *m*, respectively. $\sigma_{\theta}^2 = 1, \ \sigma_{n_i}^2 = 0.001 \max(d_{s,i}^2, 1), \text{ and } \sigma_{w_i}^2 = -55 \text{dBm}.$
- $|h_i|^2 = \min(1/d_i^2, 1)$ and $|g_{(m,k),i}|^2 = G_{(m,k),i}G_r\zeta\lambda^2/(4\pi L_p d_{m,i})^2$ where



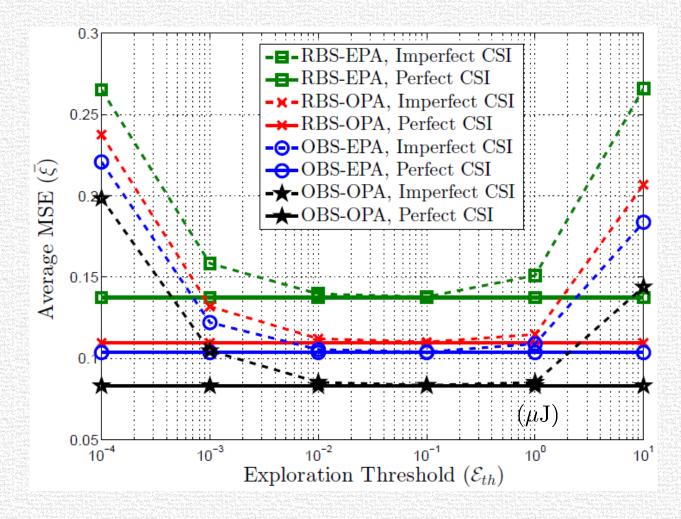
MSE vs Total Charging Power Constraint



OBS-OPA : Optimized Beam Selection and Optimized Power Allocation **OBS-EPA** : Optimized Beam Selection but Equal Power Allocation **RBS-OPA** : Random Beam Selection but Optimized Power Allocation **RBS-EPA** : Random Beam Selection and Equal Power Allocation

MSE vs Exploration Threshold

• Imperfect CSI: $P_e = 4$ Watt, $T_e = 500$ ms, B = 2 MHz.



Conclusion

- Examined the cross-layer impact of the WPT charging strategy on the distributed estimation performance.
- Derived an upper bound for the MSE of the distributed estimation system.
- Proposed an effective beam selection and charging power allocation scheme based on successive convex approximation.
- Furthermore, in a more recent work, we proposed methods to explore the sensors and CSI, and examined the impact of imperfect CSI on the distributed estimation performance.