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Overview

Given the high demand for automated systems for human action
recognition, great efforts have been undertaken in recent
decades to progress the field [1]. In this paper, we present
frameworks for single and multi-viewpoints action recognition
based on:

- Space-Time Volume (STV) of human silhouettes

« 3D-Histogram of Oriented Gradient (3D-HOG) Embedding [2]

Our contributions
- 3D-HOG Embedding [2] based frameworks exploiting
local gestures analysis
» single and multi-viewpoints cases
* accuracy and robustness to appearance changes
« outperforming results on Weizmann and iI3DPost datasets
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Baseline Method

- Baseline method: 3D-HOG Embedding [2]
- |t defines the basic data processing structure (Fig 2), also
used in the Proposed Frameworks

Key drawbacks

- Attention problem (Fig 3): it has not been addressed,;

- Performance stability: affected by randomly selected
library in the Embedding phase;

« Action-labels-based local classifiers, without
considering cross-location local gestures relationships;
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Fig 2. Basic data processing
P structure. Silhouettes are
piled up over time (STV).
r Then, the STV is partitioned
into blocks and the 3D-HOG
is computed for each of them.

Action 1 Action 2

Fig 3. Example of Attention Problem.

B locations where Action 1 and
Action 2 look different '
locations where Action 1 and
Action 2 look similar
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Main ideas
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 Locally, actions look like simpler gestures
- Globally, an action can be seen as a particular
combination of local gestures (Fig 4)

Multi-viewpoints framework
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Fig 4. Example of local gesture analysis for peculiar
gestures composition. Letters represent gesture labels.

Hierarchical Clustering for Gestures Library
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Hierarchical Clustering

* n: clustering parameter < library size
¢ standard deviation
* a1: humber of principal components (PCA)
- o2: explained variance percentage (PCA)
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9 Conclusions

Comparison between baseline and proposed frameworks performance

Experimental Setting: Leave-one-actor-out (robustness to appearance changes)

Experimental Setting: Leave-one-actor-out (robustness to appearance changes)

I3DPost Dataset
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» Outperforming results in all studied cases
- Stable performance over different trainings
- Higher accuracy for smaller n (best values)
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Comparison between dataset state-of-arts and proposed frameworks performance

Examples

True Label: HWAV

Confidence

Estimated Label: HWAV

True Label: JUMP

|
I
IL State-of-art results (Weizmann) and outperforming results (i3DPost)

Method Actions Accuracy n ol Method Actions POV Accuracy n o2
Proposed Framework 10 100% 20 6 Proposed Framework 8 8 99.60% 30 95%
Proposed Framework 6 8 99.73% 30 99%

Gorelick et al. 10 100% - -

Jiang et al. 10 100% - - Castro et al. 6 2 99.00% - -

C. Li et al. 9 97.53% - - losifidis et al. 6 8 98.16% - -

Ahsan et al. 9 97.5% - - losifidis et al. 8 8 96.34% - -

Ahsan et al. 10 94.26% - - Hilsenbeck et al. 6 8 92.42% - .

Conclusions

Confidence

Estimated Label: JUMP |
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Key facts

» Gesture analysis: to leverage local information for global action information retrieval
« Searching local gestures: 3D-HOG features clustered with Hierarchical Clustering

* No longer randomly chosen Local (Gestures) Library
» Cross-location Gesture Composition Learning: with L2 Regularized Logistic Regression
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