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Given the high demand for automated systems for human action 
recognition, great efforts have been undertaken in recent 
decades to progress the field [1]. In this paper, we present 
frameworks for single and multi-viewpoints action recognition 
based on:

•	 Space-Time Volume (STV) of human silhouettes

•	 3D-Histogram of Oriented Gradient (3D-HOG) Embedding [2]

Our contributions

•	 3D-HOG Embedding [2] based frameworks exploiting

 	 local gestures analysis 

•	 single and multi-viewpoints cases 

•	 accuracy and robustness to appearance changes

•	 outperforming results on Weizmann and i3DPost datasets


Fig 1. Examples of RGB and Silhoettes data.

•	 Baseline method: 3D-HOG Embedding [2]

•	 It defines the basic data processing structure (Fig 2), also 			 		 	     
	 used in the Proposed Frameworks

Fig 3. Example of Attention Problem.
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Fig 2.  Basic data processing 
structure. Silhouettes are 
piled up over time (STV). 
Then, the STV is partitioned 
into blocks and the 3D-HOG 
is computed for each of them.

Key drawbacks

•	 Attention problem (Fig 3): it has not been addressed;

•	 Performance stability: affected by randomly selected 
	 library in the Embedding phase; 

•	 Action-labels-based local classifiers, without

	 considering cross-location local gestures relationships;
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Main ideas

•	 Locally, actions look like simpler gestures

•	 Globally, an action can be seen as a particular

	 combination of local gestures (Fig 4)

Key facts 
• Gesture analysis: to leverage local information for global action information retrieval
• Searching local gestures: 3D-HOG features clustered with Hierarchical Clustering
• No longer randomly chosen Local (Gestures) Library
• Cross-location Gesture Composition Learning: with L2 Regularized Logistic Regression



Action 1 Action 2

Fig 4. Example of local gesture analysis for peculiar 
gestures composition. Letters represent gesture labels.
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•  n: clustering parameter     library size

•    : standard deviation

•  α1: number of principal components (PCA)

•  α2: explained variance percentage (PCA)
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Comparison between baseline and proposed frameworks performance  
Experimental Setting: Leave-one-actor-out (robustness to appearance changes)


Comparison between dataset state-of-arts and proposed frameworks performance  
Experimental Setting: Leave-one-actor-out (robustness to appearance changes)


Conclusions 
•	 Outperforming results in all studied cases

•	 Stable performance over different trainings

•	 Higher accuracy for smaller n (best values) 

Conclusions  
State-of-art results (Weizmann) and outperforming results (i3DPost)
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