

Overview

Given the high demand for automated systems for human action recognition, great efforts have been undertaken in recent decades to progress the field [1]. In this paper, we present frameworks for single and multi-viewpoints action recognition based on:

- Space-Time Volume (STV) of human silhouettes
- 3D-Histogram of Oriented Gradient (3D-HOG) Embedding [2]

Fig 1. Examples of RGB and Silhoettes data

Our contributions

- 3D-HOG Embedding [2] based frameworks exploiting local gestures analysis
- single and multi-viewpoints cases
- accuracy and robustness to appearance changes
- outperforming results on Weizmann and i3DPost datasets

Baseline Method

- Baseline method: 3D-HOG Embedding [2]
- It defines the basic data processing structure (Fig 2), also used in the Proposed Frameworks

Key drawbacks

- Attention problem (Fig 3): it has not been addressed;
- **Performance stability**: affected by *randomly selected library* in the Embedding phase;
- Action-labels-based local classifiers, without considering cross-location local gestures relationships;

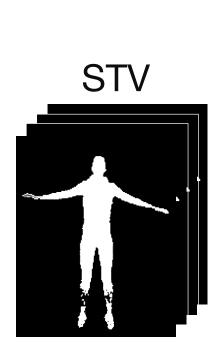


Fig 3. Example of Attention Problem.

Iocations where Action 1 and Action 2 look different Iocations where Action 1 and Action 2 look similar

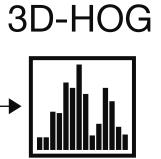
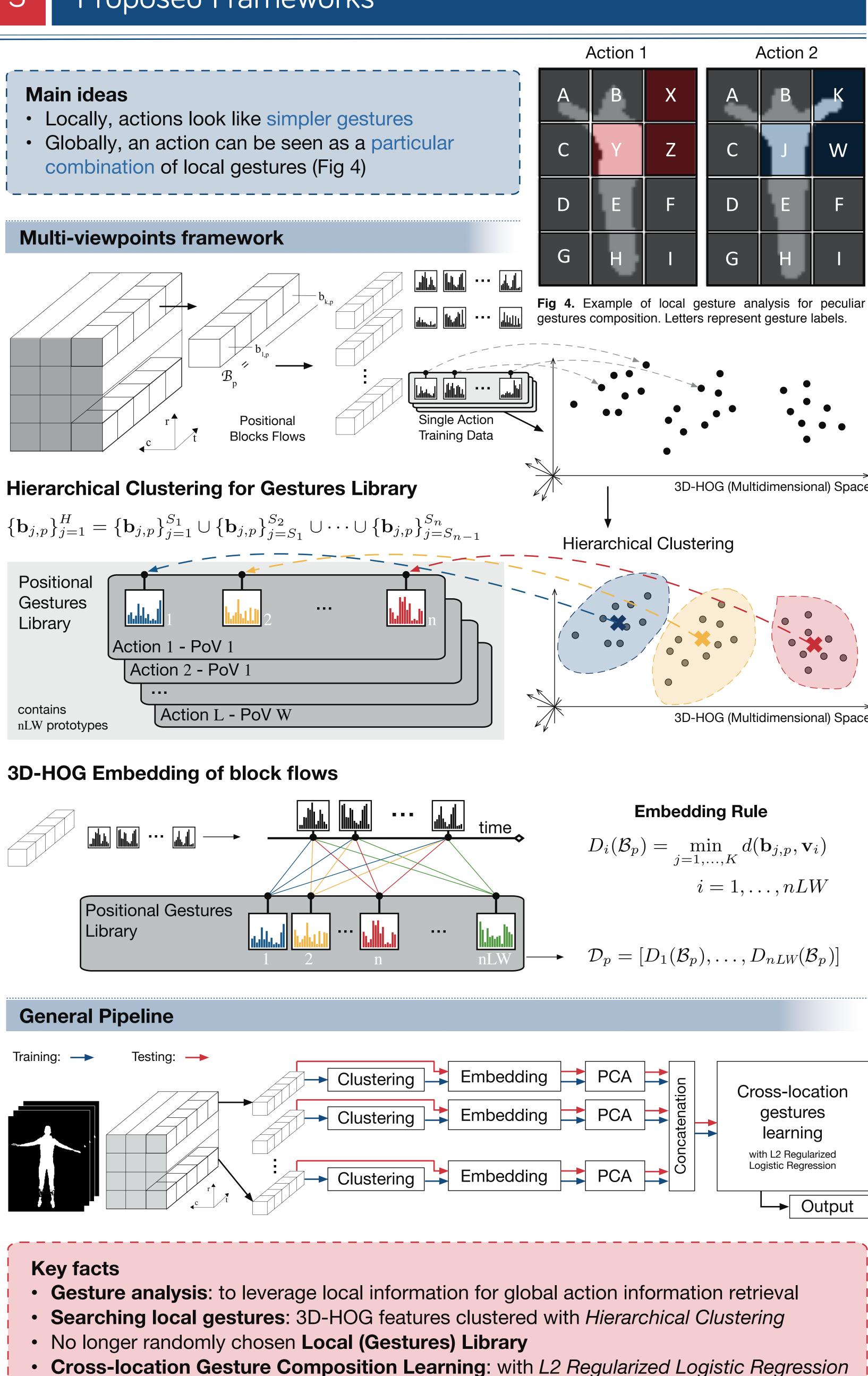


Fig 2. Basic data processing structure. Silhouettes are piled up over time (STV). Then, the STV is partitioned into blocks and the 3D-HOG is computed for each of them

Action ⁻


Action 2

3D-HOG EMBEDDING FRAMEWORKS FOR SINGLE AND MULTI-VIEWPOINTS ACTION RECOGNITION BASED ON HUMAN SILHOUETTES

Federico Angelini*, Zeyu Fu*, Sergio A. Velastin‡, Jonathon A. Chambers*, Syed Mohsen Naqvi* *Intelligent Sensing and Communications Research Group, Newcastle University, UK [‡]Department of Computer Science and Engineering, University Carlos III de Madrid, Spain

3D-HOG (Multidimensional) Space

3D-HOG (Multidimensional) Space

$$= \min_{j=1,\dots,K} d(\mathbf{b}_{j,p}, \mathbf{v}_i)$$
$$i = 1, \dots, nLW$$

$$_1(\mathcal{B}_p),\ldots,D_{nLW}(\mathcal{B}_p)]$$

Results

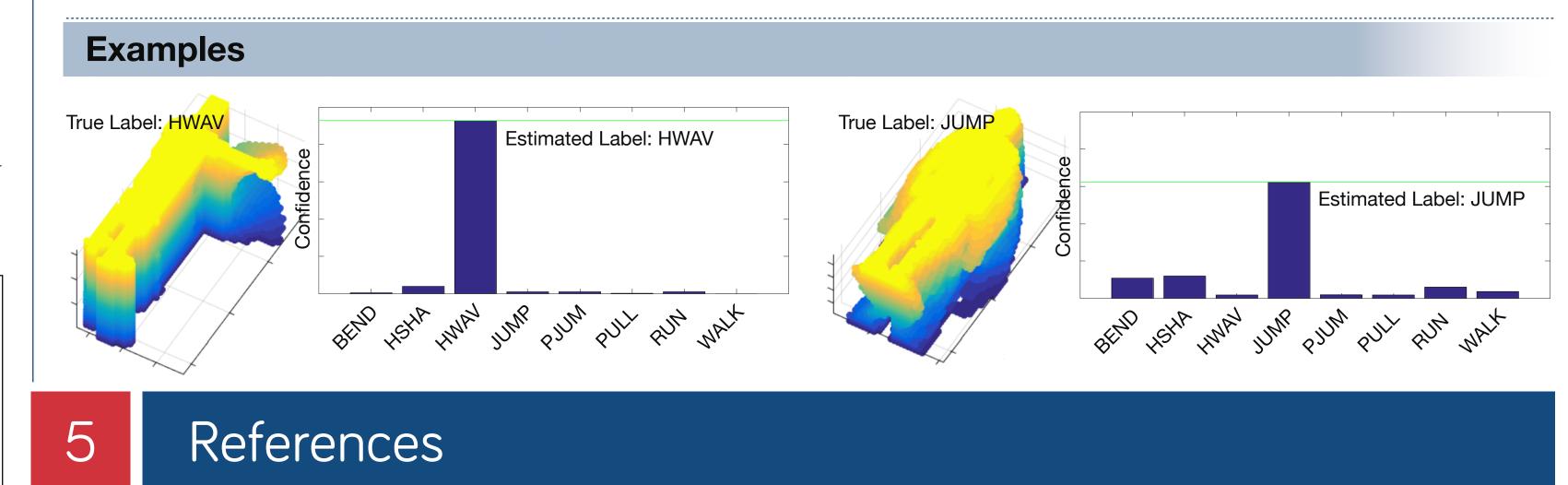
Comparison between baseline and proposed frameworks performance

Experimental Setting: *Leave-one-actor-out* (robustness to appearance changes)

Legend

- n: clustering parameter \propto library size
- σ : standard deviation
- α₁: number of principal components (PCA)
- α₂: explained variance percentage (PCA)

Comparison between dataset state-of-arts and proposed frameworks performance


Experimental Setting: *Leave-one-actor-out* (robustness to appearance changes)

Weizmann Dataset

Method	Actions		'n	α1	Method	Actions	POV	Accuracy	n	α2
Proposed Framework	< 10	100%	20	6	Proposed Framework	< 8	8	99.60%	30	95%
·					Proposed Framework	K 6	8	99.73%	30	99%
Gorelick et al.	10	100%	-	-	•					
Jiang et al.	10	100%	-	-	Castro et al.	6	2	99.00%	-	-
C. Li et al.	9	97.53%	-	-	losifidis et al.	6	8	98.16%	-	-
Ahsan et al.	9	97.5%	-	-	losifidis et al.	8	8	96.34%	-	-
Ahsan et al.	10	94.26%	-	-	Hilsenbeck et al.	6	8	92.42%	-	-

Conclusions

State-of-art results (Weizmann) and **outperforming** results (i3DPost)

- 4–21, 2017.
- Notes in Computer Science, vol 6313, no. part 3, pp. 635-648, 2010.

Human Behaviour Analysis Demo

EPSRC Engineering and Physical Sciences

THALES

Research Council

- Conclusions • Outperforming results in all studied cases
- Stable performance over different trainings
- Higher accuracy for smaller n (best values)

i3DPost Dataset

[1] S. Herath, M. Harandi, F. Porikli, "Going deeper into action recognition: A survey", Image and Vision Computing, vol 60, pp

[2] D. Weinland, M. Özuysal, P. Fua, "Making action recognition robust to occlusions and viewpoint changes", LNCS - Lecture

