

1. Introduction

Video Surveillance Homeland Security Sports Analysis

Challenges:

Variable number of targets, Targets moving in close proximity, False alarms, and Long-term occlusions.

Our contributions:

- Develop individual target-specific classifiers built on the CNN-based discriminative correlation filter (DCF) to discriminate the desired targets from noisy background and other appearing targets.
- \triangleright Present a hybrid likelihood function to address the target ambiguity.

2. Baseline Method

The Gaussian Mixture PHD Filter

The PHD filter with the GM implementation [1] is much more efficient than its SMC counterpart. The posterior PHD intensity function can be represented by a sum of weighted Gaussian components that are propagated analytically in time.

Prediction:

$$\nu_{k|k-1}(\mathbf{x}) = \sum_{j=1}^{J_{k|k-1}} w_{k|k-1}^{j} \mathcal{N}(\mathbf{x}; \mathbf{m}_{k|k-1}^{j}, \mathbf{P}_{k|k-1}^{j})$$

▷ Update:

$$\nu_k(\mathbf{x}) = p_M \nu_{k|k-1}(\mathbf{x}) + \sum_{\mathbf{z} \in \mathbf{Z}_k^+} \sum_{j=1}^{J_{k|k-1}} w_k^j(\mathbf{z}) \mathcal{N}(\mathbf{x}; \mathbf{m}_{k|k}^j(\mathbf{z}), \mathbf{P}_{k|k}^j)$$

3. Detection Analysis and Spatio-Temporal Relation

A spatio-temporal cost matrix $\mathbf{W}_{k,st} \in \mathbb{R}^{M \times N^+}$ for target association :

$$S(\mathbf{x}_{k|k-1}^{i}, \mathbf{z}_{k}^{j}) = \frac{1}{(2\pi\sigma_{s})^{1/2}} \exp\left(-\frac{|\mathbf{H}\mathbf{x}_{k|k-1}^{i} - \mathbf{z}_{k}^{j}|}{2\sigma_{s}^{2}}\right)$$

GM-PHD Filter Based Online Multiple Human Tracking using Deep Discriminative Correlation Matching

Zeyu Fu, Federico Angelini, Syed Mohsen Naqvi and Jonathon A. Chambers

Intelligent Sensing and Communications Research Group, Newcastle University, UK

4. Proposed Approach

Correlation Matching:

Response Map:

with CNN features f and Gaussian label matrix g [2],

Matched

PSR = 20.684

 $\hat{\mathbf{c}}_{k-1}^{d} = \frac{\hat{\mathbf{g}} \odot (\mathbf{f}^{d})^{\dagger}}{\sum_{d=1}^{D} \hat{\mathbf{f}}^{d} \odot (\hat{\mathbf{f}}^{d})^{\dagger} + \lambda}$

Assisted Living

(1)

(2)

(3)

Model Update: Update the DCFs of matched targets during tracking for handling the appearance variations.

Hybrid likelihood function:

 $\mathbf{W}_{k,h} = \mathbf{W}_{k,st} \odot \mathbf{W}_{k,dcm}$

Advantage: Compensate for unreliability present in the individual likelihood functions, especially when targets ambiguities occur in either motion dynamics or visual content.

Target initialization: We only add a new-born target and simultaneously initialise a discriminative correlation filter for its appearance modelling, if it can be tracked in the next frame.

Detections at frame k

Pairwise matching score: $sigmoid(x) = \frac{1}{1+e^{-(\alpha x+\beta)}}$ squashes the PSRs to a range of [0, 1]. These scores form a cost matrix $\mathbf{W}_{k,dcm} \in \mathbb{R}^{M \times N^+}$.

Unmatched

PSR = 4.155

(6)

5. Experiments

ons for all sequences.

Method	Mode	MOTA(↑)	MOTP(↑)	FP(↓)	FN(↓)	$IDS(\downarrow)$
Proposed	Online	46.5	77.2	23,859	272,430	5,649
GMPHD-KCF	Online	40.3	75.4	47,056	283,923	5,734
GM_PHD	Online	36.2	76.1	23,682	328,526	8,025
FWT	Offline	51.3	77.0	24,101	247,921	2,648
EDMT17	Offline	50.0	77.3	32,279	247,297	2,264
IOU17	Offline	45.5	76.9	19,993	281,643	5,988
DP_NMS	Offline	43.7	76.9	10,048	302,728	4,942

Quantitative results:

- leaderboard.
- Best performance amongst GM-PHD filtering methods. Visual results: MOT Benchmark 2017.

MOT17-14 #473

6. Conclusions and Future Work

- the proposed method.

7. References

Processing, vol. 54, no. 11, pp. 4091–4104, 2006. 2015, pp. 3074–3082.

arXiv:1603.00831 [cs.CV], pp. 1-13, 2016.

We evaluate on the MOTChallenge Benchmark [3] using the standard detecti-

CLEAR MOT metrics are employed to evaluate the tracking performance.

Competitive performance compared to other state-of-the-art methods on the

Developed a unified tracking algorithm that incorporates deep discriminative correlation matching with the GM-PHD filter for online multiple human tracking. Experimental Results on MOT17 Challenge demonstrate the effectiveness of

We plan to integrate an interaction model to further address the occlusions.

Multimodal Signal and Information Processing l'eam