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> We evaluate on the MOTChallenge Benchmark [3] using the standard detecti-
Features [ CNN i__ ons for all sequences.
| Features » CLEAR MOT metrics are employed to evaluate the tracking performance.
an i LT Method | Mode MOTA() MOTP(+)| EP(L) | EN(l) IDS(])
— '3 & Features CNN - Proposed Online 46.5 77.2 23,859 272,430 5,649
Vldeo Sunelllance Homeland Securlt\ Sports Analysis Assisted Living Tracked Targets ‘IFFT Features| Detections at GMPHD-KCF Online 40.3 /5.4 47,056 283,923 5,734
N | at frame k-1 Update frame k GMPHD Online 362  76.1 23,682 328,526 8,025
Challenges: o o T_Fsl\)m FWT  Offine, 51.3 | 77.0 [24,101 247,921 2,648
Variable number of targets, Ta.rgets moving in close proximity, False Map EDMT17  Offline 50.0 77.3 32,279 247,297 2,264
alarms, and Long-term occlusions. ) IOU17  Offline  45.5 76.9 19,993 281,643 5,988
> Our contributions: > Training Phase: Perform the fast Fourier transform (FFT) in the frequency domain DP NMS | Offline 43.7 76.9 10,048 302,728 4,942
> Develop individual target-specific classifiers built on the CNN-based with CNN features f and Gaussian label matrix g [2], > Quantitati e
discriminative correlation filter (DCF) to discriminate the desired tar- a & o (f)f 4 > gzl;]l :tilt\i,\?ere::;‘lorsr"r.]ance compared to other state-of-the-art methods on the
gets from noisy background and other appearing targets. Ch-1 7 chl? 1@4 o (f'd)T 1) (4) Ieadeprboard P P
- R . o _ .
Present a hybrid likelihood function to address the target ambiguity. > Correlation Matching: > Best performance amongst GM-PHD filtering methods.

. > Response Map: » Visual results: MOT Benchmark 201 7.
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> The Gaussian Mixture PHD Filter d=1 .
The PHD filter with the GM implementation [1] is much more efficient > Pairwise matching score: sigmoid(r) = =+ squashes the PSRs to a range
than its SMC counterpart. The posterior PHD intensity function can of [0, 1]. These scores form a cost matrix W, g, € RV
be represented by a sum of weighted Gaussian components that are Matched Unmatched
propagated analytically in time.
> Prediction:
k=1
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> Update: I 1444 o 7. MOT17-01 #181
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Developed a unified tracking algorithm that incorporates deep discriminative
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3. Detection Analysis and Spatio-Temporal Relation correlation matching with the GM-PHD filter for online multiple human tracking.
0N - e > Experimental Results on MOT17 Challenge demonstrate the effectiveness of
Z_l_ o Z \ I‘A y (pixel) 0 o 2 x (pixel) h y (pixel) 0 o0 x (pixel) the proposed methOd
—’Z‘ | _ PSR = 20.684 PSR =4.155 > We plan to integrate an interaction model to further address the occlusions.
R Reliable patio-Tempora
Z, Detections | | Relation > Model Update: Update the DCFs of matched targets during tracking for handling 7. References
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