KU LEUVEN

Niccolò Antonello^{1,2}, Enzo De Sena³, Marc Moonen¹, Patrick A. Naylor⁴, Toon van Waterschoot^{1,2}

¹ESAT-STADIUS, KU Leuven, BE ²e-Media Lab, KU Leuven, BE ³IoSR University of Surrey Guilford, UK ⁴Electronic Engineering, Imperial London College, UK

April 19, 2018, Calgary, Canada

- 1. Introduction
- 2. Acoustic models
- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

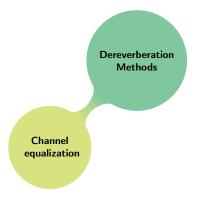
Outline

1. Introduction

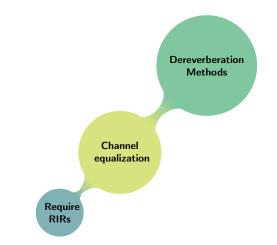
- 2. Acoustic models
- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

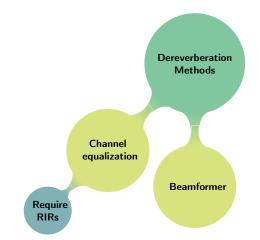
Reverberant environments reduce speech intelligibility

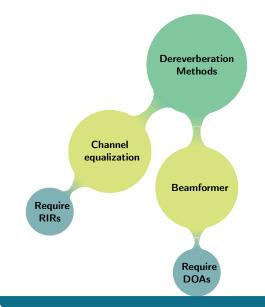
Reverberant environments reduce speech intelligibility

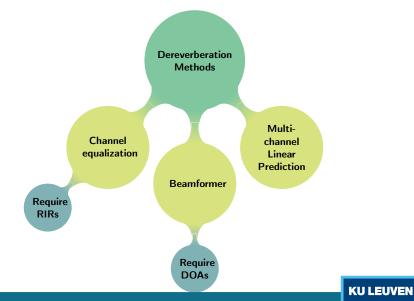


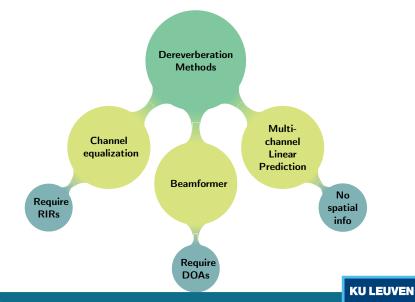
Reverberant environments reduce speech intelligibility

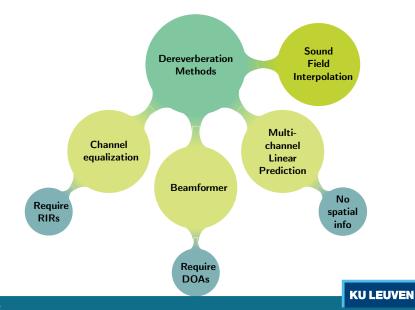












Localization and dereverberation formulated jointly

Localization and dereverberation formulated jointly

Sound field recorded by mic array is **interpolated**

- Localization and dereverberation formulated jointly
- Sound field recorded by mic array is **interpolated**
- Inverse problem:
 - Rely on acoustic models

- Localization and dereverberation formulated jointly
- Sound field recorded by mic array is **interpolated**
- Inverse problem:
 - Rely on acoustic models
 - Plane Wave Decomposition Model (PWDM)
 - Time-domain Equivalent Source Model (TESM)

- Localization and dereverberation formulated jointly
- Sound field recorded by mic array is interpolated
- Inverse problem:
 - Rely on acoustic models
 - Plane Wave Decomposition Model (PWDM)
 - Time-domain Equivalent Source Model (TESM)
 - Sparse prior

5/23

- spatial sparsity
- spatio-temporal sparsity
- spatio-spectral sparsity

KU LEU

- Localization and dereverberation formulated jointly
- Sound field recorded by mic array is interpolated
- Inverse problem:
 - Rely on acoustic models
 - Plane Wave Decomposition Model (PWDM)
 - Time-domain Equivalent Source Model (TESM)
 - Sparse prior
 - spatial sparsity
 - spatio-temporal sparsity
 - spatio-spectral sparsity
- ► Large-scale nonsmooth optimization problem:
 - accelerated variant of Proximal Gradient (PG) algorithm
 - Weighted Overlap-Add (WOLA) procedure

1. Introduction

2. Acoustic models

- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

Time-domain equivalent source model (TESM)

Time-domain spherical wave definition (Green's function):

$$p(t, \mathbf{x})|_{\mathbf{x}=\mathbf{x}_m} = \frac{1}{4\pi d_{l,m}} \delta\left(t - \frac{d_{l,m}}{c}\right) * w(t),$$

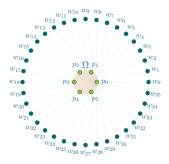
where w(t) is a weight signal driving the equivalent source.

Time-domain equivalent source model (TESM)

Using many equivalent sources and discretizing over time:

$$p(\mathbf{x},t)|_{\mathbf{x}=\mathbf{x}_m} = \sum_{l=0}^{N_w-1} \frac{1}{4\pi d_{l,m}} \delta\left(t - \frac{d_{l,m}}{c}\right) * w_l(t), \ \mathbf{x}_m \in \Omega,$$

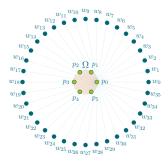
any sound pressure inside source-free volume $\boldsymbol{\Omega}$ can be modeled.



Generalizing for many mic positions:

 $\mathbf{P}=\mathsf{D}_t\mathbf{W}$

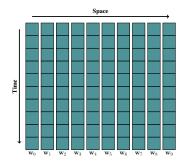
where $D_t : \mathbb{R}^{N_t \times N_w} \to \mathbb{R}^{N_t \times N_m}$ dictionary of spherical waves.



Generalizing for many mic positions:

 $\mathbf{P}=\mathsf{D}_t\mathbf{W}$

where $D_t : \mathbb{R}^{N_t \times N_w} \to \mathbb{R}^{N_t \times N_m}$ dictionary of spherical waves.

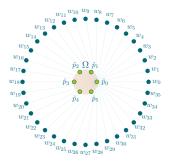


Plane wave decomposition model (PWDM)

Same using many plane waves (frequency domain):

$$\hat{p}(\mathbf{x}, f)|_{\mathbf{x}=\mathbf{x}_m} \approx \sum_{l=0}^{N_w - 1} e^{-ik_f d_{l,m}} \hat{w}_l(f) \text{ for } \mathbf{x}_m \in \Omega,$$

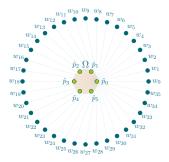
any sound pressure inside source-free volume Ω can be modeled.



Generalizing for many mic positions:

 $\hat{\mathbf{P}}=\mathsf{D}_p\hat{\mathbf{W}}$

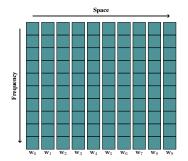
where $D_p : \mathbb{C}^{N_f \times N_w} \to \mathbb{C}^{N_f \times N_m}$ dictionary of plane waves.



Generalizing for many mic positions:

 $\hat{\mathbf{P}}=\mathsf{D}_p\hat{\mathbf{W}}$

where $D_p : \mathbb{C}^{N_f \times N_w} \to \mathbb{C}^{N_f \times N_m}$ dictionary of plane waves.

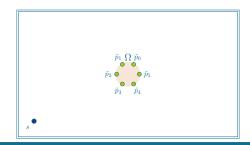


1. Introduction

- 2. Acoustic models
- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

The inverse problem

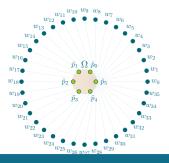
Sound field created by $\mathit{far}\ \mathit{field}\ \mathit{source}\ is\ \mathit{recorded}\ by\ an\ array\ of\ N_m\ mics.$



Optimal weight signals \mathbf{W}^{\star} found by solving:

$$\mathbf{W}^{\star} = \underset{\mathbf{W}}{\operatorname{argmin}} \quad f(\mathbf{W}) = \frac{1}{2} \|\mathsf{D}\mathbf{W} - \tilde{\mathbf{P}}\|_{F}^{2}$$

heavily ill-posed problem \rightarrow over-fitting

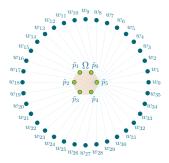


KU LEUVEN

Optimal weight signals \mathbf{W}^{\star} found by solving:

$$\mathbf{W}^{\star} = \underset{\mathbf{W}}{\operatorname{argmin}} \quad \frac{1}{2} \| \mathsf{D}\mathbf{W} - \tilde{\mathbf{P}} \|_{F}^{2} + \lambda g(\mathbf{W})$$

regularize using a sparsity inducing regularization term g.

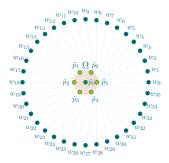


KU LEUVEN

Optimal weight signals \mathbf{W}^{\star} found by solving:

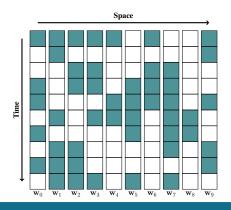
$$\mathbf{W}^{\star} = \underset{\mathbf{W}}{\operatorname{argmin}} \quad \frac{1}{2} \| \mathsf{D}\mathbf{W} - \tilde{\mathbf{P}} \|_{F}^{2} + \lambda g(\mathbf{W})$$

regularize using a sparsity inducing *regularization term* g. Use additional mic $\tilde{\mathbf{p}}_v$ for tuning regularization parameter λ .



Spatio-temporal sparsity

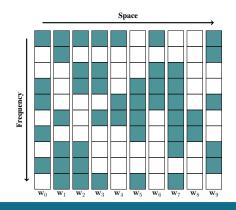
Model: TESM Regularization: $g(\mathbf{W}) = \|\mathbf{W}\|_1$



KU LEUVEN

Spatio-spectral sparsity

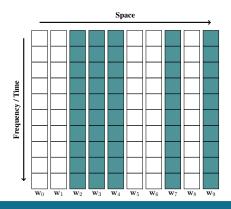
Model: PWDM Regularization: $g(\mathbf{W}) = \|\mathbf{W}\|_1$



KU LEUVEN

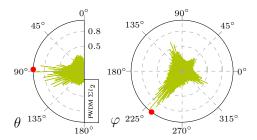
Spatial sparsity

Model: both PWDM and TESM Regularization: $g(\mathbf{W}) = \sum_{l=0}^{N_w - 1} \|\mathbf{w}_l\|_2$



Joint Dereverberation & Localization

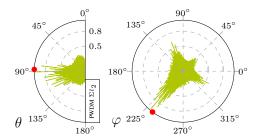
After solving inverse problem obtain \mathbf{W}^{\star}



Plot energy of columns of \mathbf{w}_l^{\star} as a function of azimuthal (φ) and polar (θ) angles.

Joint Dereverberation & Localization

After solving inverse problem obtain \mathbf{W}^{\star}

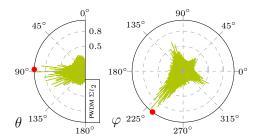


Localization

Find *d*-th column of \mathbf{W}^{\star} with strongest energy. This corresponds to equivalent source with specific DOA.

Joint Dereverberation & Localization

After solving inverse problem obtain \mathbf{W}^{\star}



Dereverberation

Dereverberated signal readily available: \mathbf{w}_d^{\star} Reverberation is spatially distributed among equivalent sources

1. Introduction

- 2. Acoustic models
- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

Inverse problem: nonsmooth cost function

- \blacktriangleright f is smooth
- \blacktriangleright g nonsmooth

Optimization algorithm

Proximal Gradient (PG) algorithm

- can deal with nonsmooth terms
- cheap iterations
- suitable for large scale problems
- can be accelerated using quasi Newton methods[†]

[†] N. Antonello, L. Stella, P. Patrinos and T. van Waterschoot, "Proximal gradient algorithms: applications in signal processing", arXiv:1803.01621, 2018.

github.com/kul-forbes/StructuredOptimization.jl

Optimization algorithm

Proximal Gradient (PG) algorithm

- can deal with nonsmooth terms
- cheap iterations
- suitable for large scale problems
- can be accelerated using quasi Newton methods[†]

Optimization problem may still be intractable:

▶ if $N_w = 500 \ N_t = 16000 \ (2 \text{ s } F_s = 8 \text{ kHz}) \rightarrow 8 \cdot 10^6$ optimization variables

Optimization algorithm

Proximal Gradient (PG) algorithm

- can deal with nonsmooth terms
- cheap iterations
- suitable for large scale problems
- can be accelerated using quasi Newton methods[†]

Optimization problem may still be intractable:

▶ if $N_w = 500 \ N_t = 16000 \ (2 \text{ s } F_s = 8 \text{ kHz}) \rightarrow 8 \cdot 10^6$ optimization variables

Weighted Overlap-Add procedure:

▶ split $\tilde{\mathbf{P}}$ into overlapping frames of $N_{\tau} = 512 \rightarrow 256 \cdot 10^3$ optimization variables *sub-problem*

KULE

- 1. Introduction
- 2. Acoustic models
- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

RIRs simulated with Randomized Image Method¹

 $T_{60} = 1 \text{ s}$ $[L_x, L_y, L_z] = [7.34, 8.09, 2.87] \text{ m}$

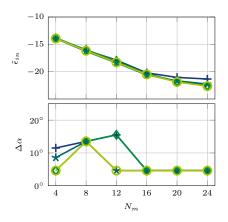
 Mic signals created with male speech signal (sensor noise SNR = 40dB)

▶ Spherical microphone array with N_m

 $\blacktriangleright~N_w = 500$ equivalent sources on a Fibonacci Lattice radius 2.9 m

¹E. De Sena, N. Antonello, M. Moonen, and T. van Waterschoot, "On the Modeling of Rectangular Geometries in Room Acoustic Simulations", IEEE Transactions of Audio, Speech Language Processing, vol. 21, no. 4, 2015.

github.com/nantonel/RIM.jl



▶ Average interpolation error *ē*_{in}
■ Similar performances
■ Spatio-temporal sparsity slightly

DOA estimate

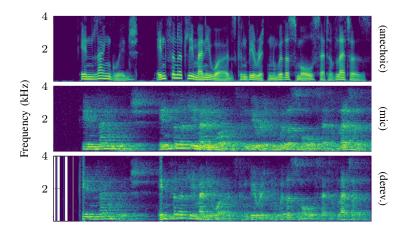
worse

- good performance even with few mics
- minimum angular distance of 4.5° due to finite number of directions

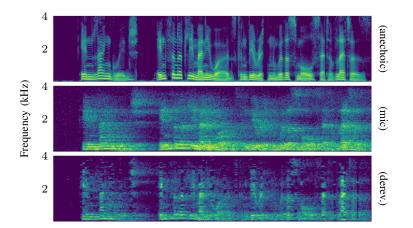
KU LEU

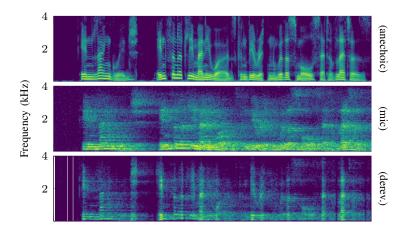
\rightarrow more mics, better results

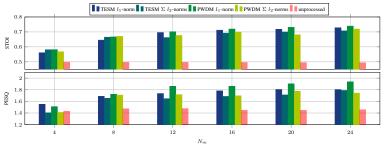
Dereverberation - **Spatio-temporal sparsity** $N_m = 16$



KU LEUVEN







- Speech intelligibility (STOI) & Speech Quality (PESQ) scores
- In line with interpolation error and DOA estimates
- Better performance with spatio-spectral sparsity
- Informal listening test: worse results are with spatio-temporal sparsity

KU LEU

Sound samples

1. Introduction

- 2. Acoustic models
- 3. The inverse problem
- 4. Optimization algorithm
- 5. Simulation results
- 6. Conclusions

Conclusions

Novel method for joint source localization and dereverberation

Inverse problem rely on acoustic model and sparse prior

- Spatio-temporal sparsity (TESM + l₁-norm)
- Spatio-spectral sparsity (PWDM + l₁-norm)
- ► Spatial sparsity (∑l₂-norm)

Solve with accelerated PG algorithm & WOLA procedure

- Simulation results
 - good DOA estimates with few mics
 - Better dereverberation as more mics are used