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Novel method

I Localization and dereverberation formulated jointly

I Sound field recorded by mic array is interpolated
I Inverse problem:

� Rely on acoustic models
I Plane Wave Decomposition Model (PWDM)
I Time-domain Equivalent Source Model (TESM)

� Sparse prior
I spatial sparsity
I spatio-temporal sparsity
I spatio-spectral sparsity

I Large-scale nonsmooth optimization problem:
� accelerated variant of Proximal Gradient (PG) algorithm
� Weighted Overlap-Add (WOLA) procedure
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Time-domain equivalent source model (TESM)

Time-domain spherical wave definition (Green’s function):

p(t,x)|x=xm =
1

4πdl,m
δ
(
t− dl,m

c

)
∗ w(t),

where w(t) is a weight signal driving the equivalent source.

Ω

p0 w0
d0,0
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Time-domain equivalent source model (TESM)

Using many equivalent sources and discretizing over time:

p(x, t)|x=xm =

Nw−1∑
l=0

1

4πdl,m
δ
(
t− dl,m

c

)
∗ wl(t), xm ∈ Ω,

any sound pressure inside source-free volume Ω can be modeled.
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Time-domain equivalent source model (TESM)

Generalizing for many mic positions:

P = DtW

where Dt : RNt×Nw → RNt×Nm dictionary of spherical waves.
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Plane wave decomposition model (PWDM)

Same using many plane waves (frequency domain):

p̂(x, f)|x=xm ≈
Nw−1∑
l=0

e−ikfdl,mŵl(f) for xm ∈ Ω,

any sound pressure inside source-free volume Ω can be modeled.
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The inverse problem

Sound field created by far field source is recorded by an array of
Nm mics.

Optimal weight signals W? found by solving:

W? = argmin
W

1

2
‖DW − P̃‖2F

+ λg(W)

regularize using a sparsity inducing regularization term g.
Use additional mic p̃v for tuning regularization parameter λ.
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The inverse problem

Optimal weight signals W? found by solving:

W? = argmin
W

f(W) =
1

2
‖DW − P̃‖2F

+ λg(W)

heavily ill-posed problem → over-fitting

regularize using a
sparsity inducing regularization term g.
Use additional mic p̃v for tuning regularization parameter λ.
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Acoustic model and Sparsity combinations

Spatio-temporal sparsity

Model: TESM
Regularization: g(W) = ‖W‖1
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Acoustic model and Sparsity combinations

Spatio-spectral sparsity

Model: PWDM
Regularization: g(W) = ‖W‖1
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Acoustic model and Sparsity combinations

Spatial sparsity

Model: both PWDM and TESM
Regularization: g(W) =

∑Nw−1
l=0 ‖wl‖2
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Joint Dereverberation & Localization

After solving inverse problem obtain W?
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Plot energy of columns of w?
l as a function of azimuthal (ϕ) and

polar (θ) angles.
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Localization

Find d-th column of W? with strongest energy.
This corresponds to equivalent source with specific DOA.
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Joint Dereverberation & Localization

After solving inverse problem obtain W?
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Dereverberation

Dereverberated signal readily available: w?
d

Reverberation is spatially distributed among equivalent sources
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Optimization algorithm

Inverse problem: nonsmooth cost function
I f is smooth
I g nonsmooth

Proximal Gradient (PG) algorithm
I can deal with nonsmooth terms
I cheap iterations
I suitable for large scale problems
I can be accelerated using quasi Newton methods†

Optimization problem may still be intractable:
I if Nw = 500 Nt = 16000 (2 s Fs = 8 kHz) → 8 · 106

optimization variables
Weighted Overlap-Add procedure:
I split P̃ into overlapping frames of Nτ = 512 → 256 · 103

optimization variables sub-problem
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I can deal with nonsmooth terms
I cheap iterations
I suitable for large scale problems
I can be accelerated using quasi Newton methods†

† N. Antonello, L. Stella, P. Patrinos and T. van Waterschoot, “Proximal gradient algorithms: applications in signal
processing”, arXiv:1803.01621, 2018.

github.com/kul-forbes/StructuredOptimization.jl
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Set-up

I RIRs simulated with Randomized Image Method1

� T60 = 1 s
� [Lx, Ly, Lz] = [7.34, 8.09, 2.87] m

I Mic signals created with male speech signal (sensor noise SNR
= 40dB)

I Spherical microphone array with Nm

I Nw = 500 equivalent sources on a Fibonacci Lattice radius
2.9 m

1E. De Sena, N. Antonello, M. Moonen, and T. van Waterschoot, "On the Modeling of Rectangular Geometries in
Room Acoustic Simulations", IEEE Transactions of Audio, Speech Language Processing, vol. 21, no. 4, 2015.

github.com/nantonel/RIM.jl
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Interpolation error & DOA estimate
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I Average interpolation error ε̄in
� Similar performances
� Spatio-temporal sparsity slightly

worse

I DOA estimate
� good performance even with few

mics
� minimum angular distance of 4.5◦

due to finite number of directions

→ more mics, better results
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Dereverberation - Spatio-temporal sparsity Nm = 16
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Dereverberation - Spatio-spectral sparsity Nm = 16
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Dereverberation - Spatial sparsity sparsity Nm = 16
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Objective measures
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I Speech intelligibility (STOI) & Speech Quality (PESQ) scores
I In line with interpolation error and DOA estimates
I Better performance with spatio-spectral sparsity
I Informal listening test: worse results are with spatio-temporal

sparsity
I Sound samples
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Conclusions

I Novel method for joint source localization and dereverberation

� Inverse problem rely on acoustic model and sparse prior
I Spatio-temporal sparsity (TESM + l1-norm)
I Spatio-spectral sparsity (PWDM + l1-norm)
I Spatial sparsity (Σl2-norm)

� Solve with accelerated PG algorithm & WOLA procedure
I Simulation results

� good DOA estimates with few mics
� Better dereverberation as more mics are used
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