CLUSTERING OF DATA WITH MISSING ENTRIES
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ABSTRACT / PROPOSED SCHEME \
» We propose a method to perform clustering of data with missing entries. [, penalty based optimization problem Effect of different penalties on clustering
» The technique is able to recover the original clusters. M
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When does data have missing entries? In most practical situations!
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Netflix Surveys Medical Records
» Each user rates a small » Many respondents leave » All information is not 5 #
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4 THEORETICAL GUARANTEES O
Definitions and Assumptions Clustering using [y penalty Computing probability of success
oK 2 2 Features not » P: Dimensionality
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Result with missing entries:

> Po: probability that a
feature is measured
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> Generalized to K clusters:

If & < 1, correct clustering with probability > 1 — ng
Probability of success is higher for:

» More poi.nts (M). » Few clusters (K)
» Few missing entries > Well separated clusters

Result with no missing entries:
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» Cluster Separation: = 6 » Cluster size: < €
» Feature concentration: Coherence of difference between
points in different clusters is

where S is the set of all sets with < K non-zero positive integers with sum M

If K < 1, correct clustering is guaranteed

RESULTS
, _ _ Clustering of simulated data Clustering of wine data
Study of theoretical guarantees Theoretical guarantees vs experimental results .
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