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• Kernel methods have been successful techniques in pattern recognition for a
variety of applications, e.g. speech, image, and medical diagnosis.

• However, kernel based learning has at least quadratic complexity in the number
of training samples, which makes their use in large scale applications problematic.
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Motivation



• There are two primary approaches for efficient, large-scale kernel
based learning:
• Kernel approximation (e.g. Nyström and Random Fourier features)

• Data sample selection or outlying data removal.

• In order to be useful for scalable learning, these methods need to be
computationally efficient.

• Our work follows the sample selection approach, and we use a
filtering method to remove outlying samples.

• Our method requires only linear time to assign scores to all the data
samples, even in a kernel induced feature space.

3

Motivation



• Given a supervised training dataset {𝐗 ∈ ℛ𝑴×𝑵, 𝐲 ∈ ℛ𝑵} with 𝑁
samples and 𝑀 features, the discriminant information 𝜓 is
defined as

𝜓 = trace ത𝐒 + 𝜌𝐈 −1𝐒𝐵

where ത𝐒 and 𝐒𝐵 are the scatter matrix and between-class scatter
matrix, respectively.

• We can obtain an equivalent expression for DI via the kernel trick,
𝜓 = trace ഥ𝐊2 + 𝜌ഥ𝐊 −1𝐊𝐵

where ഥ𝐊 is the centered kernel matrix and 𝐊𝐵 is the kernel
between-class scatter matrix.
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Discriminant Information (DI)



• DI measures the separability of the data for classification:
• Equals to zero when the class centers overlap (no separability).

• Close to 𝐿 − 1, where 𝐿 is the number of data classes, when the samples are
concentrated around their class centers (good separability).

• DI is indicative of a learner’s classification ability, as demonstrated in
earlier work.
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2. Thee Chanyaswad, Mert Al, J. Morris Chang, and S. Y. Kung, “Differential mutual information forward search for multikernel discriminant-
component selection with an application to privacy-preserving classification,” in Machine Learning for Signal Processing (MLSP), 2017 IEEE
27th International Workshop on. 2017, IEEE.
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Discriminant Information (DI)



• Suppose the sample (𝐱, y) has been removed from the training
dataset. Let ത𝐒′ and 𝐒𝐵

′ denote the scatter matrix and between-class
scatter matrix obtained from the remaining data. We define the ORDI,
𝜕𝜓 of the sample (𝐱, y) as

𝜕𝜓 = trace ത𝐒 + 𝜌𝐈 −1𝐒𝐵 − trace ത𝐒′ + 𝜌𝐈 −1𝐒𝐵
′

• We can similarly define ORDI with kernel matrices as

𝜕𝜓 = trace ഥ𝐊2 + 𝜌ഥ𝐊 −1𝐊𝐵 − trace ഥ𝐊′2 + 𝜌ഥ𝐊′2
−1

𝐊𝐵
′

• ORDI is expected to be small for outliers. Whereas it is expected to be 
large for samples that are easily separated from other classes.
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Outlier Removal Discriminant Information 
(ORDI)



Outlier Removal Discriminant Information 
(ORDI)

• Computing ORDI for a single sample can take 𝑂 𝑁3 time
and 𝑂 𝑁2 memory.

• Need to find a criterion that is faster to compute, without
compromising the predictive performance.
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Outlier Removal Discriminant Information 
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• Theorem: Given a supervised training dataset {𝐗 ∈ ℛ𝑴×𝑵, 𝐲 ∈ ℛ𝑵} and a kernel
function 𝑘(𝐱𝑖 , 𝐱𝑗), the Outlier Removal Discriminant Information of the sample
(𝐱, y) is bounded by

𝜕𝜓 𝐱, 𝑦 =
𝛽𝜅𝐱

𝜌 𝜅𝐱 − 𝜌
+
𝐻4, Τ1 2 𝛿𝐱,𝑦 + 𝜅𝐱

𝜌 𝑁𝑦 − 1
+

𝜅𝐱 𝛿𝐱,𝑦 + 𝜅𝐱

𝜌 𝜅𝐱 − 𝜌 𝑁𝑦 − 1

where 𝛽 = σ𝑙=1
𝐿 𝑁𝑙𝑘(𝝁𝑙 , 𝝁𝑙), 𝜅𝐱 = 𝑘(𝐱, 𝐱), 𝑁𝑙 is the number of training samples

in class 𝑙, 𝝁𝑙 is the mean of the samples in class 𝑙, 𝐻4, Τ1 2 is the generalized
harmonic number, and

𝛿𝐱,𝑦 = 𝑁𝑦 𝑘2 𝝁𝑦, 𝝁𝑦 − 4𝑘 𝝁𝑦 , 𝝁𝑦 𝑘 𝐱, 𝝁𝑦 + 2𝜅𝐱𝑘 𝝁𝑦, 𝝁𝑦 + 2𝑘2 𝐱, 𝝁𝑦
ൗ1 2
.

• Computing the upper bound on ORDI over the entire dataset requires
only 𝑂(𝑁) time!

8

Bounding ORDI



• We compare our filtering method based on the bound on ORDI with two
wrapper methods and one filtering method for outlier sample removal.
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Experiments (Sample Ratios)
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Time gains: 1.5x 3.5x 3.9x 2x 7x 9x
Accuracies: +0.88% -2,89% -5.53% +1.13% -2.43% -4.13%

Experiments (Training Times)



• We proposed a filter approach for outlying data removal and sample
selection in supervised learning, which only requires linear time to
compute all the sample scores.
• By removing 20% of the samples, we were able to exceed the performance of

the original classifier on our two datasets, which leads to a win-win in terms
of predictive performance and computational/memory cost.

• By removing up to 80% of the samples, we were able to achieve very
significant computational savings, by sacrificing relatively little accuracy.
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Conclusion
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