Dictionary learning algorithm for Multi-Subject fMRI analysis via temporal

Introduction

« Dictionary learning (DL) methods have been suc-
cesstully extended to multi-subject tIMRI data anal-
ysis using spatially or temporally concatenated
datasets.

« opatial concatenation allows for the extraction
of group-level temporal dynamics and sub-specific
spatial maps.

« Temporal concatenation lets us extract sub-specific
dynamics and group-level spatial maps.

« Here we propose a hybrid dictionary learning
framework which can extract both group and sub-
specific dynamics and spatial maps simultaneously
which are of particular interest in task-based tMRI
analysis.

Background

[YD Yo, -y YN]a DL meth-
ods aims at finding a linear representation for the set

Given a set of signals Y =

of signals Y by solving

{D.X} = argmin | Y -~ DX |5

With an overcomplete D, this problem is ill-posed.
Extra constraints are imposed on both D and X to

solve this problem, which are

- Columns of X € RAXN

- Columns of D € R*&

should be sparse.

should have unit ¢, norm.

rm

I'he resulting dictionary D contains K dense tem-
poral dynamics and the sparse matrix X has the

respective K spatial maps.

Multi-subject extensions of DL methods use spatially
concatenated datasets Y, = [Y1, Yo,...,Y,| lead-
ing to group-level dynamics or temporally concate-
nated datasets Y, = {YlT, Y2T . ,Y; }T which
ocenerates group-level spatial maps. Here p denotes
the number of subjects.

and spatial concatenation
Asif Igbal & Abd-Krim Seghouane

Department of Electrical and Electronic Engineering

Melbourne School of Engineering, The University of Melbourne, Australia

The Proposed Algorithm

Goal of the algorithm is to represent each voxels’
time course from Y, as a linear combination of a
few atoms from Dy (shared) and D; (sub-specific)
dictionaries such that Ve =1,2,--- ,p

X,
_Xi_

To achieve this goal, we solve the following minimiza-

tion problem:
&1
min »_ {—HYi ~ DXy — DiX[[3 + 2||D] A3
D,;. X, ;=1 2 ? 2)
st {[xi" Mo < sis %070 < s, [|dk][2 = 1
V +=1,2,...,.pandm=1,2,...,N
Here A; = Do, Dy,...,D;_1,Di4q,...,D,| is the
concatenation of all except currently updating dic-
tionary. We propose to solve 2 in an alternating op-

timization fashion, i.e. solving for one variable with
others fixed.

1. Sparse Coding: With dictionaries (Dg, D;) and
sub-specific sparse codes X; fixed, we first update
X, by minimizing

]
X = Iglgolfl§|\Ete D, Xo|| 7 s.t]|x('][0 < s0(3)
where E,, = %[EI,E;,...,E;]T, E - Y, —

D; X;, and D;, € R™*%0_ Similarly, we find X;
by minimizing

A 1
where Bz — YvZ — D()XQ.

2. Dictionary Updates: To solve for Dy, we solve:
1

Dy = win || By, — DXy 7+ D¢ Adll7 (5

Dy 2
where Esp — :El, EQ, c e ,Ep], Ez — Yz — Dz Xz

Similarly, we find D, by solving:
A 1
D; = min_|[B; — DiXi[ +
where Bz — ~YvZ — DOXO.

7]
§HD7;TA2'H% (6)

Algorithm Overview

Input: tMRI datasets Y;, K, K;, so, S;, 1
Initialization: Initialize Dy, D;, Xy and X,

for t =1:nolt do

Fix Dy, D; and use OMP to solve (3) for X, and
(4) for X; Vi=1,...,p.

Fix Xy, X; and sequentially update Dg by solving
(5) and D; by solving (6) Vi =1,...,p.
Output: D, X\, D,, X,

Simulation Results
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Figure 1: a) The simulated ground truth TC/SMs and their b)
mean correlation coefficients w.r.t. Dy, D; and X, X, over 100

trials for SNR = 0 dB.

Table 1: Mean, median, and standard deviation of most corre-
lated TCs and SMs w.r.t. GrTr over 100 trials.

TCs SMs
SNR dB  Algo

Mean Median STD Mean Median STD

Proposed 0.98 0.98 0.02 0.87 0.88 0.05

-10 CODL 095 095 0.03 079 082 0.14

Proposed 0.92 0.96 0.08 0.69 0.66 0.18

-1 CODL 068 063 023 044 027 034
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Real TIMRI Results
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Table 2: Correlation coefficients of most correlated spatial maps

w.r.t. the RSN templates as recovered by proposed algorithm

and CODL.

RSN 1 2 3 4 D 6 7 8 9 10

Mean

Proposed| 0.55 0.48 0.57 0.60 0.41 0.44 0.47 0.41 0.55 0.57
CODL 0.72 0.71 0.43 047 0.31 0.34 0.36 0.31 0.49 0.37
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