Feature LMS Algorithms

Paulo S. R. Diniz¹ Hamed Yazdanpanah¹ Markus V. S. Lima¹

¹Laboratório de Sinais, Multimídia e Telecomunicações (SMT) Departamento de Engenharia Eletrônica e de Computação (DEL) Universidade Federal do Rio de Janeiro (UFRJ)

{diniz, hamed.yazdanpanah, markus.lima}@smt.ufrj.br

International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018)

Presentation Outline

Peature LMS Algorithms

8 Results

Outline

Introduction

2) Feature LMS Algorithms

Motivations

- When we have some *a priori* knowledge about the unknown system \mathbf{w}_o
 - We can exploit it for accelerating the convergence rate
- When we want to obtain an estimate of the unkown system \mathbf{w}_o such that a determined characteristic for the estimate is desirable
 - Lowpass, highpass, linear phase

Proposal

- Feature LMS (F-LMS) algorithms \Rightarrow impose some structure on the adaptive filter's coefficients \Rightarrow exploit hidden sparsity in system, such as sparsity in linear combination of coefficients
- In this paper, we present the F-LMS algorithm for:
 - Unknown systems with lowpass narrowband spectrum
 - Unknown systems with highpass narrowband spectrum

Outline

Peature LMS Algorithms

F-LMS Algorithm: Problem and Solution

• Problem:

where $\mathcal{P}(\cdot)$ is the sparsity promoting penalty function and $\mathbf{F}(k)$ is the feature matrix that takes the unknown system to a sparse vector.

• For example, choose function \mathcal{P} to be the l_1 norm and the feature matrix $\mathbf{F}(k)$ to be time-invariant \mathbf{F}

$$\xi_{\text{F-LMS}}(k) = \frac{1}{2} |e(k)|^2 + \alpha \|\mathbf{Fw}(k)\|_1$$

• Solution:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu e(k)\mathbf{x}(k) - \mu \alpha \mathbf{p}(k),$$

where $\mathbf{p}(k) \in \mathbb{R}^{N+1}$ is the gradient of function $\|\mathbf{Fw}(k)\|_1$.

Example I: F-LMS Algorithm for Lowpass Systems

- Unknown system has lowpass narrowband spectrum ⇒ its impulse response is smooth ⇒ the difference between adjacent coefficients is small
- Choose $\mathbf{F} \in \mathbb{R}^{N \times (N+1)}$ as

$$\mathbf{F} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & & \ddots & \ddots \\ 0 & 0 & \cdots & 1 & -1 \end{bmatrix} \Rightarrow \mathbf{Fw}(k) \text{ is a sparse vector}$$

• Therefore, $\mathbf{p}(k) = [p_0(k) \cdots p_N(k)]^T$ is given by

$$\begin{cases} p_i(k) = \operatorname{sgn}(w_0(k) - w_1(k)) & \text{if } i = 0, \\ p_i(k) = -\operatorname{sgn}(w_{i-1}(k) - w_i(k)) + \operatorname{sgn}(w_i(k) - w_{i+1}(k)) & \text{if } i = 1, \cdots, N-1, \\ p_i(k) = -\operatorname{sgn}(w_{N-1}(k) - w_N(k)) & \text{if } i = N. \end{cases}$$

Example II: F-LMS Algorithm for Highpass Systems

- Unknown system has highpass narrowband spectrum ⇒ adjacent coefficients have similar absolute values, but with opposite signs
- Choose $\mathbf{F} \in \mathbb{R}^{N \times (N+1)}$ as

$$\mathbf{F} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix} \Rightarrow \mathbf{Fw}(k) \text{ is a sparse vector}$$

• Therefore, $\mathbf{p}(k) = [p_0(k) \cdots p_N(k)]^T$ is given by

$$\begin{cases} p_i(k) = \operatorname{sgn}(w_0(k) + w_1(k)) & \text{if } i = 0, \\ p_i(k) = \operatorname{sgn}(w_{i-1}(k) + w_i(k)) + \operatorname{sgn}(w_i(k) + w_{i+1}(k)) & \text{if } i = 1, \cdots, N-1, \\ p_i(k) = \operatorname{sgn}(w_{N-1}(k) + w_N(k)) & \text{if } i = N. \end{cases}$$

More Examples for Feature Matrix

• When unknown system is the result of upsampling a lowpass system by a factor of L (e.g., L=2)

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & -1 \end{bmatrix}$$

• When unknown system is the result of interpolating a highpass system by a factor L (e.g., L=2)

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 1 \end{bmatrix}$$

Result

Outline

Introduction

2 Feature LMS Algorithms

Scenario: System Identification

- Algorithms tested: LMS and F-LMS algorithms
- Input signal: $\mathbf{x} \sim \mathcal{N}(0, 1)$
- Filter order: N = 39, i.e., 40 coefficients
- $\mathbf{w}(0) = [0, \cdots, 0]^T$
- $\alpha = 0.05$
- SNR: 20 dB
- Unknown lowpass system: $\mathbf{w}_{o,l} = [0.4, 0.4, \cdots, 0.4]^T$
- Unknown highpass system: $\mathbf{w}_{o,h} = [0.4, -0.4, 0.4 \cdots, -0.4]^T$

F-LMS Algorithm Identifying Unknown System with Lowpass Spectrum

• Unknown lowpass system: $\mathbf{w}_{o,l} = [0.4, 0.4, \cdots, 0.4]^T$

Figure: Learning (MSE) curves

F-LMS Algorithm Identifying Unknown System with Highpass Spectrum

• Unknown highpass system: $\mathbf{w}_{o,h} = [0.4, -0.4, 0.4 \cdots, -0.4]^T$

Figure: Learning (MSE) curves

F-LMS Algorithm Identifying Unknown Block Sparse System

• Block sparse system with lowpass narrowband spectrum

Figure: Learning (MSE) curves

F-LMS Algorithm Identifying Unknown Block Sparse System

• Block sparse system with highpass narrowband spectrum

Figure: Learning (MSE) curves

Outline

Introduction

2) Feature LMS Algorithms

Conclusions

- In this presentation:
 - We have proposed a family of algorithms called feature LMS algorithm
 - We have presented some examples of the F-LMS algorithms for exploiting the lowpass and highpass characteristics of unknown systems
 - Some other characteristics can be exploited (e.g., linear phase)
 - The F-LMS algorithms have some advantages such as higher convergence rate or lower steady-state MSE
 - The computational complexity of the proposed F-LMS algorithms are close to that of the LMS algorithm

Thank You!

