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Background

What is tensor?

What can tensor do? 

vector: 1st-order tensor matrix: 2nd-order tensor 3rd-order tensor

A matrix can represent a 2-order relation.
A tensor can represent a high-order relation.

    Generalization of an n-dimensional array.



Tensor-train Decomposition (TTD) 

Decompose a tensor                              to TT format:

[Oseledets 2011]

For each element:
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incomplete tensor as a sparse tensor, only the observed entries

need to be enumerated. We arrange all the observed entries

into vector y 2 RM
, and arrange the according entries which

are approximated by core tensors into x 2 RM
. Then the

optimization objective function of all missing entries can be
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can also be formulated as follow:
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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STTO algorithm

eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
N � 3 are denoted by boldface Euler script letters, e.g., X .
X(n) denotes the nth matrix of a matrix sequence, and the
representations of vector and tensor sequence are denoted in
the same way. When given a tensor X 2 RI1⇥I2⇥···⇥IN , the
(i1, i2, · · · , iN )th element of X is denoted by xi1i2···iN or
X (i1, i2, · · · , iN ).
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Furthermore, the Frobenius norm of X is defined by
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hX ,X i. The Hadamard product is denoted

by ⇤ which is an element-wise product of vectors, matrices
or tensors of same sizes. The Kronecker product of two
matrices X 2 RI⇥K and Y 2 RJ⇥L is X⌦Y 2 RIJ⇥KL.

2.2. Tensor-train Decomposition

The most prominent advantage of tensor-train decomposition
is that the amount of model parameters will not grow expo-
nentially by data dimension. It decomposes a tensor into a
sequence of three-way tensor factors (core tensors). In partic-
ular, the TT decomposition of a tensor X 2 RI1⇥I2⇥···⇥IN

can be expressed as follow:
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rank which limits the size of every core tensor. Furthermore,
Each element of tensor X can be represented by core tensors
as follow:
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is the inth slice of the nth core tensor of size
rn�1 ⇥ rn, n = 1, 2, · · · , N , in 2 {1, 2, · · · , In}.

3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work

In our previous work [12], we proposed an algorithm called
Tensor-train Weighted OPTimization (TT-WOPT) which

achieves high performance in data completion task. How-
ever, TT-WOPT considers all the missing entries of data as
zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
sors, and the number of all the observed entries is M . De-
fine the index of the mth observed entry as {im1 , i
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sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
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Loss function:
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p
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2.2. Tensor-train Decomposition
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is that the amount of model parameters will not grow expo-
nentially by data dimension. It decomposes a tensor into a
sequence of three-way tensor factors (core tensors). In partic-
ular, the TT decomposition of a tensor X 2 RI1⇥I2⇥···⇥IN

can be expressed as follow:
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, · · · ,G(N) �, (1)
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(1)

,G
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, · · · ,G(N) is a sequence of three-way core
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3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work
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ineffective as it computes the whole scale tensor of which
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For n = 1, 2, · · · , N , and m = 1, · · · ,M , the partial deriva-
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. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
entries which are approximated by core tensors into x 2 RM .
Then the optimization objective function of all missing entries
can be formulated by:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
ky � xk2F . (6)

By equation (3) and (4), the optimization objective function
can also be formulated as follow:
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So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (5) with

the same index, that is:
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j = 1, 2, · · · , In, and n = 1, 2, · · · , N . After all the gradi-
ents of every slice of core tensors are obtained, any first-order
optimization method can be applied to the STTO algorithm.
The whole process of STTO is summarized in Algorithm 1.
The computational complexity of TT-WOPT and STTO is
O(rN�1

I
N�1) and O(Mr

N�1), respectively. From this we
can see STTO largely reduces the computational complexity
and is totally free from dimensionality of tensor.

Algorithm 1 Sparse Tensor-train Optimization (STTO)
1: Input: incomplete sparse tensor Y and TT-rank r.
2: Initialization: core tensors G(1),G(2), · · · ,G(N)of approximated

tensor X .
3: While the optimization stopping condition is not satisfied
4: For n=1:N
5: For j=1:In
6: Compute @f

@G
(n)
j

=
PM

m=1
m:imn =j

(xm � ym)(G>n
imn

G<n
imn

)T .

7: End
8: End
9: Update G(1),G(2), · · · ,G(N) by gradient descent method.
10: End while
11: Output: G(1),G(2), · · · ,G(N).

4. EXPERIMENTS

In this section, our proposed STTO is compared with two
state-of-the-art algorithms: CP weighted optimization (CP-
WOPT) [2] and Fully Bayesian CP (FBCP) [3]. Simulation
experiments, color image data experiments are conducted to
validate the effectiveness of our algorithm. In addition, we
provide a tensorization method to transform visual data to a
higher dimension. This method can enhance the structure re-
lation information of data and improve the performance of our
algorithm.

For evaluation indices, we use RSE (Relative Square Er-
ror) for simulation data and image data. PSNR (Peak Signal-
to-noise Ratio) is used to measure the quality of reconstructed
image data. In order to have a more clear comparison with
CP-WOPT, we adopt the same optimization method as pa-
per [2]. We apply nonlinear conjugate gradient (NCG) with
Hestenes-Stiefel updates [13] and the Moré-Thuente line
search algorithm [14]. All the methods are implemented by
an optimization toolbox named Pablano Toolbox [15] and
optimization stopping condition is set as maximum number
of iterations.

4.1. Simulations

We consider to use values produced from a highly oscillat-
ing function: f(x) = sin

x
4 cos(x

2) [16] as simulation data,

which is expected to be well approximated by all the tensor
completion algorithms. The four tested data structures are
26⇥26⇥26 (3D), 7⇥7⇥7⇥7⇥7 (5D), 4⇥4⇥4⇥4⇥4⇥4⇥4
(7D), 3⇥3⇥3⇥3⇥3⇥3⇥3⇥3⇥3 (9D). The TT-ranks and
CP-ranks of the four simulation are set to make the number of
model parameters of the three algorithms as close as possible
respectively.

From Fig. 1. we can see, our method performs best
among the three algorithms almost in every situation. Espe-
cially when the dimension of data is increase, our algorithm
can maintain the RSE values while the performance of the
other two algorithms falls quickly.

Fig. 1. RSE comparison of three algorithms under four differ-
ent tensor dimensions. Missing rates of data are tested from
0% to 90%.

4.2. Image Data Completion

4.2.1. Visual Data Tensorization Method

From the simulation results we can see STTO can perform
well in high-order cases, so we provide the below method
to transform visual data to higher-order to enhance the
performance of our algorithm. The original size of every
image data is 256 ⇥ 256 ⇥ 3. First the three-way ten-
sor image is reshaped to a seventeen-way tensor of size
2⇥ 2⇥ · · ·⇥ 2⇥ 3 and permute the tensor according to order
{1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}. Then we re-
shape the tensor to a nine-way tensor of size 4⇥4⇥· · ·⇥4⇥3.
The first order of the transformed tensor contains the data of
a 2 ⇥ 2 pixel block of the image and the following orders of
the tensor describe the expanding pixel blocks of the image.
This nine-way tensor is considered to be a better structure

Algorithm implementation:
1. Initialize core tensors.
2. Do gradient descent until stopping condition is satisfied.
3. Use optimized tensor cores to approximate missing entries.

Loss function:

Gradient accumulation:

Computational complexity: Overcome the curse
 of dimensionality
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Hestenes-Stiefel updates [13] and the Moré-Thuente line
search algorithm [14]. All the methods are implemented by
an optimization toolbox named Pablano Toolbox [15] and
optimization stopping condition is set as maximum number
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CP-ranks of the four simulation are set to make the number of
model parameters of the three algorithms as close as possible
respectively.

From Fig. 1. we can see, our method performs best
among the three algorithms almost in every situation. Espe-
cially when the dimension of data is increase, our algorithm
can maintain the RSE values while the performance of the
other two algorithms falls quickly.

Fig. 1. RSE comparison of three algorithms under four differ-
ent tensor dimensions. Missing rates of data are tested from
0% to 90%.

4.2. Image Data Completion

4.2.1. Visual Data Tensorization Method

From the simulation results we can see STTO can perform
well in high-order cases, so we provide the below method
to transform visual data to higher-order to enhance the
performance of our algorithm. The original size of every
image data is 256 ⇥ 256 ⇥ 3. First the three-way ten-
sor image is reshaped to a seventeen-way tensor of size
2⇥ 2⇥ · · ·⇥ 2⇥ 3 and permute the tensor according to order
{1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}. Then we re-
shape the tensor to a nine-way tensor of size 4⇥4⇥· · ·⇥4⇥3.
The first order of the transformed tensor contains the data of
a 2 ⇥ 2 pixel block of the image and the following orders of
the tensor describe the expanding pixel blocks of the image.
This nine-way tensor is considered to be a better structure

Simulation results

Synthetic data:
1. produced from a highly 
oscillating function.
2. Experiments by 3D, 5D, 7D, 9D 
tensors.

Conclusions:
1. STTO performs well in 3D cases.
2. STTO outperforms others in high-
order cases.
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Algorithm 3 Tensor-train Stochastic Gradient Descent (TTSGD)

1: Input: Incomplete tensor Y and TT � rank r.

2: Initialization: core tensors G
(1),G(2), · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied
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5: For i=1:N
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9: End while

10: Output: G
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3.4. Computational Complexity

For tensorX 2 RI1⇥I2⇥···⇥IN with number of observed entriesM , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = rN�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity

TTWOPT O(rN�1IN�1) O(IN + r2IN�1)

STTOPT O(MrN�1) O(MIr)

TTSGD O(rN�1) O(Ir)

i2 = 1i2 = 2i2 = 3i2 = 4

4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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256×256

128×128

64×64

Tensorization for a 256×256×3 image 
       From 3-way to 9-way

1.Reshape 256×256×3 to 2×2×…×2×3 (17-way tensor).

2.Permute by {1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}.

3.Reshape to 4×4×4×4×4×4×4×4×3 (9-way tensor).

Better data structure  
       The first order represent a 2×2 pixel block.

 The second order represent four 2×2 pixel block.

…

This can catch more structure relation of data.

Improve performance of STTO.
Able to deal with irregular missing.
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can also be formulated as follow:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2

MX

m=1

kym � xmk2F . (5)

So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (3) with
the same index, that is:

@f

@G(n)
j

=
MX

m=1
m:imn =j

(xm � ym)(G>n
imn

G<n
imn

)T , (6)

Index Terms— incomplete data, tensor completion,
tensor-train decomposition, tensorization, optimization
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-

Low-rank TT approximation
G(1)
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. If we consider the

incomplete tensor as a sparse tensor, only the observed entries
need to be enumerated. We arrange all the observed entries
into vector y 2 RM , and arrange the according entries which
are approximated by core tensors into x 2 RM . Then the
optimization objective function of all missing entries can be
formulated by:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
ky � xk2F . (4)

By equation (1) and (2), the optimization objective function
can also be formulated as follow:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2

MX

m=1

kym � xmk2F . (5)

So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (3) with
the same index, that is:

@f

@G(n)
j

=
MX

m=1
m:imn =j

(xm � ym)(G>n
imn

G<n
imn

)T , (6)

Index Terms— incomplete data, tensor completion,
tensor-train decomposition, tensorization, optimization

*Corresponding authors: qibin.zhao@riken.jp, cao@sit.ac.jp

1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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1. INTRODUCTION

Tensors are multi-dimensional arrays and high-order genera-
tion of vectors and matrices [1]. Most of the real world data
like color images, videos, multichannel electroencephalogra-
phy (EEG) signals, etc. are more than two dimensions. Ten-
sor data representation can keep the original form of data,
which is good for retaining high dimensional structure and
adjacent relation information of data. Due to the flexibility
and highly compressibility of tensor decomposition, in re-
cent decades, many tensor methodologies have been proposed
in various fields such as image and video completion [2, 3],
brain computer interface [4], signal processing [5, 6], etc.

The main concept of solving tensor completion problem
is that we use the observed entries of incomplete data to find
the tensor decomposition factors which contain the latent fea-
tures of the data, then we use the powerful feature represen-
tation ability of tensor decomposition factors to approximate
the missing entries. The most studied and popular decompo-
sition models in recent years are CANDECOMP/PARAFAC
(CP) decomposition [7] and Tucker decomposition [8]. They
have been applied in many data completion methods. CP
weighted optimization (CP-WOPT) [2] builds objective func-
tion by the Frobenius norm of weighted approximated tensor
and observed tensor, then it uses optimization method to find
the optimal CP factor matrices by the observed data. Bayesian
CP factorization [3] employs Bayesian probabilistic model to
find the best CP factor matrices and determine the rank of CP
tensor automatically at the same time. The method in [9] re-
covers low-n-rank tensor data with its convex relaxation by
alternating direction method of multipliers (ADM). Low-n-
rank Tucker completion method is used in [10] and the exper-
iments show better results than other nuclear norm minimiza-
tion methods.

Though CP and Tucker can reach relatively high perfor-
mance in low-order tensors, due to the nature limitations of
CP and Tucker, when it comes to high-order tensors and high
missing rate of data, the performance of these two decom-
position methods will decrease rapidly. Tensor-train (TT) de-
composition [11], which is free from the “curse of dimension-
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Algorithm 3 Tensor-train Stochastic Gradient Descent (TTSGD)

1: Input: Incomplete tensor Y and TT � rank r.

2: Initialization: core tensors G
(1),G(2), · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Randomly sample one observed entry from Y.

5: For i=1:N
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8: Update corresponding G
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by gradient descent method.

9: End while

10: Output: G
(1),G(2), · · · ,G(N)

.

3.4. Computational Complexity

For tensorX 2 RI1⇥I2⇥···⇥IN with number of observed entriesM , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = rN�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity

TTWOPT O(rN�1IN�1) O(IN + r2IN�1)

STTOPT O(MrN�1) O(MIr)

TTSGD O(rN�1) O(Ir)

i2 = 1i2 = 2i2 = 3i2 = 4

4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
N � 3 are denoted by boldface Euler script letters, e.g., X .
X(n) denotes the nth matrix of a matrix sequence, and the
representations of vector and tensor sequence are denoted in
the same way. When given a tensor X 2 RI1⇥I2⇥···⇥IN , the
(i1, i2, · · · , iN )th element of X is denoted by xi1i2···iN or
X (i1, i2, · · · , iN ).

The inner product of two tensors X , Y 2 RI1⇥I2⇥···⇥IN

is defined as hX ,Yi =
P

i1

P
i2
· · ·

P
iN

xi1i2···iN yi1i2···iN .
Furthermore, the Frobenius norm of X is defined by
kXkF =

p
hX ,X i. The Hadamard product is denoted

by ⇤ which is an element-wise product of vectors, matrices
or tensors of same sizes. The Kronecker product of two
matrices X 2 RI⇥K and Y 2 RJ⇥L is X⌦Y 2 RIJ⇥KL.

2.2. Tensor-train Decomposition

The most prominent advantage of tensor-train decomposition
is that the amount of model parameters will not grow expo-
nentially by data dimension. It decomposes a tensor into a
sequence of three-way tensor factors (core tensors). In partic-
ular, the TT decomposition of a tensor X 2 RI1⇥I2⇥···⇥IN

can be expressed as follow:

X =⌧ G
(1)

,G
(2)

, · · · ,G(N) �, (1)

where G
(1)

,G
(2)

, · · · ,G(N) is a sequence of three-way core
tensors of size r0⇥I1⇥r1, r1⇥I2⇥r2, · · · , rN�1⇥IN⇥rN ,
r0 = rN = 1. r = {r0, r1, r2, · · · , rN�1, rN} is named TT-
rank which limits the size of every core tensor. Furthermore,
Each element of tensor X can be represented by core tensors
as follow:

xi1i2···iN =
NY

n=1

G(n)
in

, (2)

where G(n)
in

is the inth slice of the nth core tensor of size
rn�1 ⇥ rn, n = 1, 2, · · · , N , in 2 {1, 2, · · · , In}.

3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work

In our previous work [12], we proposed an algorithm called
Tensor-train Weighted OPTimization (TT-WOPT) which

achieves high performance in data completion task. How-
ever, TT-WOPT considers all the missing entries of data as
zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
sors, and the number of all the observed entries is M . De-
fine the index of the mth observed entry as {im1 , i

m
2 , · · · , imN},

m = 1, · · · ,M , we have ym = Y(im1 , i
m
2 , · · · , imN ), xm =

X (im1 , i
m
2 , · · · , imN ). According to equation (2), xm can be

written as:

xm =
NY

n=1

G(n)
imn

. (3)

For one observed entry of tensor Y , we formulate the objec-
tive function as:

f(G(1)
im1

,G(2)
im2

, · · · ,G(N)
imN

) =
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. (4)

For n = 1, 2, · · · , N , and m = 1, · · · ,M , the partial deriva-
tives of every used slice G(n)

imn
of this entry is calculated by:
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@G(n)
imn

= (xm � ym)(G>n
imn

G<n
imn

)T , (5)

where G>n
imn

=
NQ

n=n+1
G(n)

imn
, G<n

imn
=

n�1Q
n=1

G(n)
imn

. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
entries which are approximated by core tensors into x 2 RM .
Then the optimization objective function of all missing entries
can be formulated by:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
ky � xk2F . (6)

By equation (3) and (4), the optimization objective function
can also be formulated as follow:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
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kym � xmk2F . (7)

So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (5) with
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Random missing results

of the image data. This tensorization method is applied to
STTO in all of the following image experiments. The other
two algorithms use original three way tensor form because
they perform better in low-order tensor.

4.2.2. Random Missing

We first adopt one benchmark image named “Lena” to see
the best performance of all the algorithms in random missing
cases. Briefly, we only compare the three algorithms in high
missing rate situations. TT-ranks and CP-ranks are set prop-
erly to obtain the best results. The visualized experiment re-
sults in Fig. 2. show that our STTO algorithm outperforms
other algorithms distinctly. Particularly, when the missing
rate reaches 98% and 99%, our algorithm with our visual data
tensorization method can recover the image well while other
algorithms fail totally.

Fig. 2. Visualizing results of image recover performance of
three algorithms under five missing rates.

4.2.3. Irregular Missing

In this experiment, images with whole row missing or block
missing are tested by the three algorithms. The visualized
results of Fig. 3. and values of RSE and PSNR from Table 1.
show that STTO with visual data tensorization method can
recover images with whole row missing and block missing
well.

5. CONCLUSIONS

In this paper, we first elaborate the basis of tensor and tensor-
train decomposition. Then STTO algorithm which is efficient
and has low computational complexity is proposed. It uses
observed entries of sparse tensor to optimize the core ten-
sors of tensor-train model and recover the missing data. From

Fig. 3. Visualizing results of image recover performance of
three different algorithms under two special missing cases.

Table 1. Comparison of the recover performance (RSE and
PSNR) of three algorithms under two special missing cases.

row missing block missing
image lena peppers sailboat lena peppers sailboat

STTO RSE
PSNR

0.1138
24.00

0.1661
20.80

0.1767
19.93

0.1323
22.69

0.1611
21.06

0.1704
20.25

CP-WOPT RSE
PSNR

0.5401
10.86

0.5546
10.85

0.5545
10.34

0.1746
20.61

0.2252
18.27

0.2082
19.00

FBCP RSE
PSNR

0.5503
10.46

0.5594
10.58

0.5586
10.18

0.1498
21.66

0.1671
20.79

0.1764
20.01

the simulation experiments, we can see our algorithm outper-
forms the state-of-the-art methods in both low-order cases and
high-order cases. In addition, image completion experiment
results prove that STTO with our tensorization scheme can
achieve a high performance under high missing rate cases.
The remarkable results on image irregular missing cases also
show advantages of our algorithm and tensorization method.
From the experiment results we can see tensor-train decom-
position with high-order tensorizations can achieve high com-
pression and representation abilities. Furthermore, it should
be noted that the performance of tensor-train decomposition
is sensitive to the selection of TT-ranks. Hence, we will study
on how to optimize tensor factors and TT-ranks simultane-
ously in our future work.
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Conclusions

Contributions:
1. Propose STTO algorithm with low computational complexity.
2. Provide tensorization method to transform low-order tensor  

visual data to high-order.
3. Obtain superior results in simulation and image data completion.  

Future works:
1. Develop more scalable completion algorithm based on TTD.
2. Automatically determine TT-rank.
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TT-WOPT

STTO

TT-SGD

where G(1)
i1

, · · · ,G(N)
iN

is the sequence of tensor slices. For n = 1, 2, · · · , N ,

G(n)
in

2 RRn�1⇥Rn is mode-2 slice extracted from G
(n) according to each mode

of the index of xi1i2···iN . G(1)
i1

2 R1⇥R1 and G(N)
iN

2 RRN�1⇥1 are extracted

from first core tensor and last core tensor, they are considered as two special

matrices for overall expression convenience.

3. Tensor-train Completion Algorithms

3.1. Tensor-train Weighted Optimization (TT-WOPT) Algorithm

DefineY 2 RI1⇥I2⇥···⇥IN is the observed tensor with missing entries andX 2

RI1⇥I2⇥···⇥IN is the tensor approximated by core tensors of TT decomposition.

For the completion problem of tensors with missing entries, the positions of

the missing entries need to be specified. So we define a binary tensor W 2

RI1⇥I2⇥···⇥IN named weight tensor in which the indices of missing entries and

observed entries of tensor Y can be recorded. Every entry of W meets:

wi1i2···iN =

8
<

:
0 if yi1i2···iN is a missing entry,

1 if yi1i2···iN is an observed entry.
(4)

In this algorithm, the missing entries of Y are filled with zero, so Y is a

real number tensor. The problem of finding the decomposition factors of an

incomplete tensor can be formulated by a weight least squares (WLS) model.

Define Yw = W ⇤Y , and Xw = W ⇤X , then WLS model for calculating tensor

decomposition factors is formulated by:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
kYw �Xwk2F . (5)

This is an optimization objective function w.r.t. all the core tensors and it

can be solved by optimization method. The relation between observed tensor

Y and core tensors can be deduced as the following equation [23]:

Y(n) ⇡ G(n)
(2) (G

>n
(1) ⌦G<n

(n)), (6)

where for n = 1, ..., N ,

G>n =⌧ G
(n+1)

,G
(n+2)

, · · · ,G(N) �2 RRn⇥In+1⇥···⇥IN , (7)

6

G<n =⌧ G
(1)

,G
(2)

, · · · ,G(n�1) �2 RI1⇥···⇥In�1⇥Rn�1 , (8)

and G>N = G<1 = 1.

For n = 1, ..., N , the partial derivatives of the objective function (5) w.r.t.

the mode-2 matricization of the nth core tensor G(n) can be inferred as follow:

@f

@G(n)
(2)

= (Xw(n) �Yw(n))(G
>n
(1) ⌦G<n

(n))
T
. (9)

After the objective function and gradients are obtained, the core tensors can

be optimized by various optimization algorithms. The optimization procedure

of the TT-WOPT is listed in Algorithm 1.

Algorithm 1 Tensor-train Weighted Optimization (TT-WOPT)

1: Input: incomplete tensor Y, weight tensor W and TT-rank r.

2: Initialization: core tensors G(1),G(2), · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Compute Xw = W⇤ ⌧ G(1),G(2), · · · ,G(N) �.

5: For n=1:N

6: Compute gradients of every core tensor according to equation (9).

7: End

8: Update G(1),G(2), · · · ,G(N) by gradient descend method.

9: End while

10: Output: G(1),G(2), · · · ,G(N)
.

3.2. Tensor-train Stochastic Gradient Descent (TT-SGD) Algorithm

As seen from equation (5), TT-WOPT uses whole scale of the observed data

for every iteration. The computation of the gradients is redundant because the

space of missing entries are still used for calculation. If the scale of data is

extremely huge and the number of missing entries is high, then only a small

amount of observed entries is useful. In this situation, TT-WOPT will waste a

lot of computational storage and the computation will become time-consuming.

In order to solve the problems of TT-WOPT as mentioned above, we propose

7

eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
N � 3 are denoted by boldface Euler script letters, e.g., X .
X(n) denotes the nth matrix of a matrix sequence, and the
representations of vector and tensor sequence are denoted in
the same way. When given a tensor X 2 RI1⇥I2⇥···⇥IN , the
(i1, i2, · · · , iN )th element of X is denoted by xi1i2···iN or
X (i1, i2, · · · , iN ).

The inner product of two tensors X , Y 2 RI1⇥I2⇥···⇥IN

is defined as hX ,Yi =
P

i1

P
i2
· · ·

P
iN

xi1i2···iN yi1i2···iN .
Furthermore, the Frobenius norm of X is defined by
kXkF =

p
hX ,X i. The Hadamard product is denoted

by ⇤ which is an element-wise product of vectors, matrices
or tensors of same sizes. The Kronecker product of two
matrices X 2 RI⇥K and Y 2 RJ⇥L is X⌦Y 2 RIJ⇥KL.

2.2. Tensor-train Decomposition

The most prominent advantage of tensor-train decomposition
is that the amount of model parameters will not grow expo-
nentially by data dimension. It decomposes a tensor into a
sequence of three-way tensor factors (core tensors). In partic-
ular, the TT decomposition of a tensor X 2 RI1⇥I2⇥···⇥IN

can be expressed as follow:

X =⌧ G
(1)

,G
(2)

, · · · ,G(N) �, (1)

where G
(1)

,G
(2)

, · · · ,G(N) is a sequence of three-way core
tensors of size r0⇥I1⇥r1, r1⇥I2⇥r2, · · · , rN�1⇥IN⇥rN ,
r0 = rN = 1. r = {r0, r1, r2, · · · , rN�1, rN} is named TT-
rank which limits the size of every core tensor. Furthermore,
Each element of tensor X can be represented by core tensors
as follow:

xi1i2···iN =
NY

n=1

G(n)
in

, (2)

where G(n)
in

is the inth slice of the nth core tensor of size
rn�1 ⇥ rn, n = 1, 2, · · · , N , in 2 {1, 2, · · · , In}.

3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work

In our previous work [12], we proposed an algorithm called
Tensor-train Weighted OPTimization (TT-WOPT) which

achieves high performance in data completion task. How-
ever, TT-WOPT considers all the missing entries of data as
zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
sors, and the number of all the observed entries is M . De-
fine the index of the mth observed entry as {im1 , i

m
2 , · · · , imN},

m = 1, · · · ,M , we have ym = Y(im1 , i
m
2 , · · · , imN ), xm =

X (im1 , i
m
2 , · · · , imN ). According to equation (2), xm can be

written as:

xm =
NY

n=1

G(n)
imn

. (3)

For one observed entry of tensor Y , we formulate the objec-
tive function as:

f(G(1)
im1

,G(2)
im2

, · · · ,G(N)
imN

) =
1

2

�����ym �
NY

n=1

G(n)
imn

�����

2

F

. (4)

For n = 1, 2, · · · , N , and m = 1, · · · ,M , the partial deriva-
tives of every used slice G(n)

imn
of this entry is calculated by:

@f

@G(n)
imn

= (xm � ym)(G>n
imn

G<n
imn

)T , (5)

where G>n
imn

=
NQ

n=n+1
G(n)

imn
, G<n

imn
=

n�1Q
n=1

G(n)
imn

. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
entries which are approximated by core tensors into x 2 RM .
Then the optimization objective function of all missing entries
can be formulated by:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
ky � xk2F . (6)

By equation (3) and (4), the optimization objective function
can also be formulated as follow:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2

MX

m=1

kym � xmk2F . (7)

So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (5) with

the same index, that is:

@f

@G(n)
j

=
MX

m=1
m:imn =j

(xm � ym)(G>n
imn

G<n
imn

)T , (8)

j = 1, 2, · · · , In, and n = 1, 2, · · · , N . After all the gradi-
ents of every slice of core tensors are obtained, any first-order
optimization method can be applied to the STTO algorithm.
The whole process of STTO is summarized in Algorithm 1.
The computational complexity of TT-WOPT and STTO is
O(rN�1

I
N�1) and O(Mr

N�1), respectively. From this we
can see STTO largely reduces the computational complexity
and is totally free from dimensionality of tensor.

Algorithm 1 Sparse Tensor-train Optimization (STTO)
1: Input: incomplete sparse tensor Y and TT-rank r.
2: Initialization: core tensors G(1),G(2), · · · ,G(N)of approximated

tensor X .
3: While the optimization stopping condition is not satisfied
4: For n=1:N
5: For j=1:In
6: Compute @f

@G
(n)
j

=
PM

m=1
m:imn =j

(xm � ym)(G>n
imn

G<n
imn

)T .

7: End
8: End
9: Update G(1),G(2), · · · ,G(N) by gradient descent method.
10: End while
11: Output: G(1),G(2), · · · ,G(N).

4. EXPERIMENTS

In this section, our proposed STTO is compared with two
state-of-the-art algorithms: CP weighted optimization (CP-
WOPT) [2] and Fully Bayesian CP (FBCP) [3]. Simulation
experiments, color image data experiments are conducted to
validate the effectiveness of our algorithm. In addition, we
provide a tensorization method to transform visual data to a
higher dimension. This method can enhance the structure re-
lation information of data and improve the performance of our
algorithm.

For evaluation indices, we use RSE (Relative Square Er-
ror) for simulation data and image data. PSNR (Peak Signal-
to-noise Ratio) is used to measure the quality of reconstructed
image data. In order to have a more clear comparison with
CP-WOPT, we adopt the same optimization method as pa-
per [2]. We apply nonlinear conjugate gradient (NCG) with
Hestenes-Stiefel updates [13] and the Moré-Thuente line
search algorithm [14]. All the methods are implemented by
an optimization toolbox named Pablano Toolbox [15] and
optimization stopping condition is set as maximum number
of iterations.

4.1. Simulations

We consider to use values produced from a highly oscillat-
ing function: f(x) = sin

x
4 cos(x

2) [16] as simulation data,

which is expected to be well approximated by all the tensor
completion algorithms. The four tested data structures are
26⇥26⇥26 (3D), 7⇥7⇥7⇥7⇥7 (5D), 4⇥4⇥4⇥4⇥4⇥4⇥4
(7D), 3⇥3⇥3⇥3⇥3⇥3⇥3⇥3⇥3 (9D). The TT-ranks and
CP-ranks of the four simulation are set to make the number of
model parameters of the three algorithms as close as possible
respectively.

From Fig. 1. we can see, our method performs best
among the three algorithms almost in every situation. Espe-
cially when the dimension of data is increase, our algorithm
can maintain the RSE values while the performance of the
other two algorithms falls quickly.

Fig. 1. RSE comparison of three algorithms under four differ-
ent tensor dimensions. Missing rates of data are tested from
0% to 90%.

4.2. Image Data Completion

4.2.1. Visual Data Tensorization Method

From the simulation results we can see STTO can perform
well in high-order cases, so we provide the below method
to transform visual data to higher-order to enhance the
performance of our algorithm. The original size of every
image data is 256 ⇥ 256 ⇥ 3. First the three-way ten-
sor image is reshaped to a seventeen-way tensor of size
2⇥ 2⇥ · · ·⇥ 2⇥ 3 and permute the tensor according to order
{1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}. Then we re-
shape the tensor to a nine-way tensor of size 4⇥4⇥· · ·⇥4⇥3.
The first order of the transformed tensor contains the data of
a 2 ⇥ 2 pixel block of the image and the following orders of
the tensor describe the expanding pixel blocks of the image.
This nine-way tensor is considered to be a better structure

eral real world data experiments, and the results in simulation
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by ⇤ which is an element-wise product of vectors, matrices
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is that the amount of model parameters will not grow expo-
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is the inth slice of the nth core tensor of size
rn�1 ⇥ rn, n = 1, 2, · · · , N , in 2 {1, 2, · · · , In}.

3. SPARSE TENSOR-TRAIN OPTIMIZATION

3.1. Our Previous Work

In our previous work [12], we proposed an algorithm called
Tensor-train Weighted OPTimization (TT-WOPT) which

achieves high performance in data completion task. How-
ever, TT-WOPT considers all the missing entries of data as
zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
sors, and the number of all the observed entries is M . De-
fine the index of the mth observed entry as {im1 , i

m
2 , · · · , imN},

m = 1, · · · ,M , we have ym = Y(im1 , i
m
2 , · · · , imN ), xm =

X (im1 , i
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2 , · · · , imN ). According to equation (2), xm can be

written as:
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For one observed entry of tensor Y , we formulate the objec-
tive function as:
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. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
entries which are approximated by core tensors into x 2 RM .
Then the optimization objective function of all missing entries
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So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (5) with

eral real world data experiments, and the results in simulation
data and image data show that our method outperforms the
state-of-the-art approaches.

2. NOTATIONS AND TENSOR-TRAIN
DECOMPOSITION

2.1. Notations

In this paper, we adopt the notations from [1]. Scalars are
denoted by normal lowercase letters, e.g., x, and vectors are
denoted by boldface lowercase letters, e.g., x. Matrices are
denoted by boldface capital letters, e.g., X. Tensors of order
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zero, and it computes the whole scale of tensor in every it-
eration. If the data scale is huge and missing rate is high,
TT-WOPT will cost much computer memory space and be
ineffective as it computes the whole scale tensor of which
only a small percentage of entries is useful.

3.2. STTO Algorithm

In order to solve the problems of TT-WOPT as mentioned
in Section 3.1, our proposed algorithm STTO, which only
uses observed entries to compute the gradient of every core
tensor is proposed. Consider Y is the observed tensor with
missing entries, X is the tensor approximated by core ten-
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written as:
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For one observed entry of tensor Y , we formulate the objec-
tive function as:
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For n = 1, 2, · · · , N , and m = 1, · · · ,M , the partial deriva-
tives of every used slice G(n)
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of this entry is calculated by:
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where G>n
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=
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G(n)
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, G<n
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=
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n=1
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. If we con-

sider the incomplete tensor as a sparse tensor, only the ob-
served entries need to be enumerated. We arrange all the ob-
served entries into vector y 2 RM , and arrange the according
entries which are approximated by core tensors into x 2 RM .
Then the optimization objective function of all missing entries
can be formulated by:

f(G(1)
,G

(2)
, · · · ,G(N)) =

1

2
ky � xk2F . (6)

By equation (3) and (4), the optimization objective function
can also be formulated as follow:

f(G(1)
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(2)
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So the sum gradient of every slice G(n)
j of every core tensor

is the accumulation of the slice gradients in equation (5) with

Computational complexityLoss function
 Gradient

another algorithm, TT-SGD, which only uses one observed entries to compute

the gradients for every iteration is proposed.

Stochastic Gradient Descent (SGD) method has been applied in matrix and

tensor decompositions [24, 25, 26]. For every optimization iteration, we only

use one entry which is randomly sampled from the observed entries to optimize

the according parts of the core tensors. TT-SGD is able to process large-scale

dataset and has more scalability and e�ciency. For one observed entry of index

{i1, i2, · · · iN}, we have xi1i2···iN = X (i1, i2, · · · iN ), yi1i2···iN = Y(i1, i2, · · · iN ).

So by equation (3), the objective function is formulated by:

f(G(1)
i1

,G(2)
i2

, · · · ,G(N)
iN

) =
1

2

�����yi1i2···iN �
NY

k=1

G(k)
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�����

2

F

. (10)

For n = 1, 2, · · · , N , the partial derivatives of every corresponding slice G(n)
in

of one observed entry w.r.t. index {i1, i2, · · · iN} is calculated as:

@f

@G(n)
in

= (xi1i2···iN � yi1i2···iN )(
NY

k=n+1

G(k)
ik

n�1Y

k=1

G(k)
ik

)T . (11)

From the equation we can see, the computational complexity of TT-SGD is

not related to the scale of the observed tensor or the number of observed entries,

so it can process large-scale data by much smaller computational complexity

than TT-WOPT. This algorithm is also suitable for online/real-time learning.

The optimization process of TT-SGD is listed in Algorithm 2:

3.3. Computational Complexity

For tensor X 2 RI1⇥I2⇥···⇥IN , we assume all I1, I2, · · · , IN is equal to I,

and r1 = r2 = · · · = rN�1 = r. According to equation (9) and (11), the

time complexity of TT-WOPT and TT-SGD are O(NI
N + NI

N�1
R

2) and

O(N2
R

3) respectively. The space complexity of the two algorithms are O(IN +

I
N�1

R
2) and O(R2) respectively. TT-SGD is free from data dimensionality so

it is more suitable to process large-scale data. Though TT-WOPT has larger

computational complexity, it has a steady and fast convergence when processing

normal-size data.
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