Transcribing Lyrics From Commercial Song Audio: The First Step Towards Singing Content Processing

Che-Ping Tsai*, Yi-Lin Tuan* and Lin-shan Lee National Taiwan University

1. Introduction

> Singing content processing not yet considered

- spoken content can now be successfully retrieved, browsed, summarized and comprehended.
- ex: songs may be similarly retrieved based on lyrics in addition to melody

> Songs are human voice carrying plenty of semantics just as speech

- core information in lyrics
- with much more flexible prosody (pitch, duration, pauses, energy)
- transcribing lyrics is a much more difficult version of automatic speech recognition(ASR)

> A data set of English commercial songs by original professional singers

closer to the goal towards singing content

2. Data

>Acoustic Corpus

- Vocal-only English commercial songs from YouTube.
- Segmented to fragments from 10s to 35s, primarily based on silence.

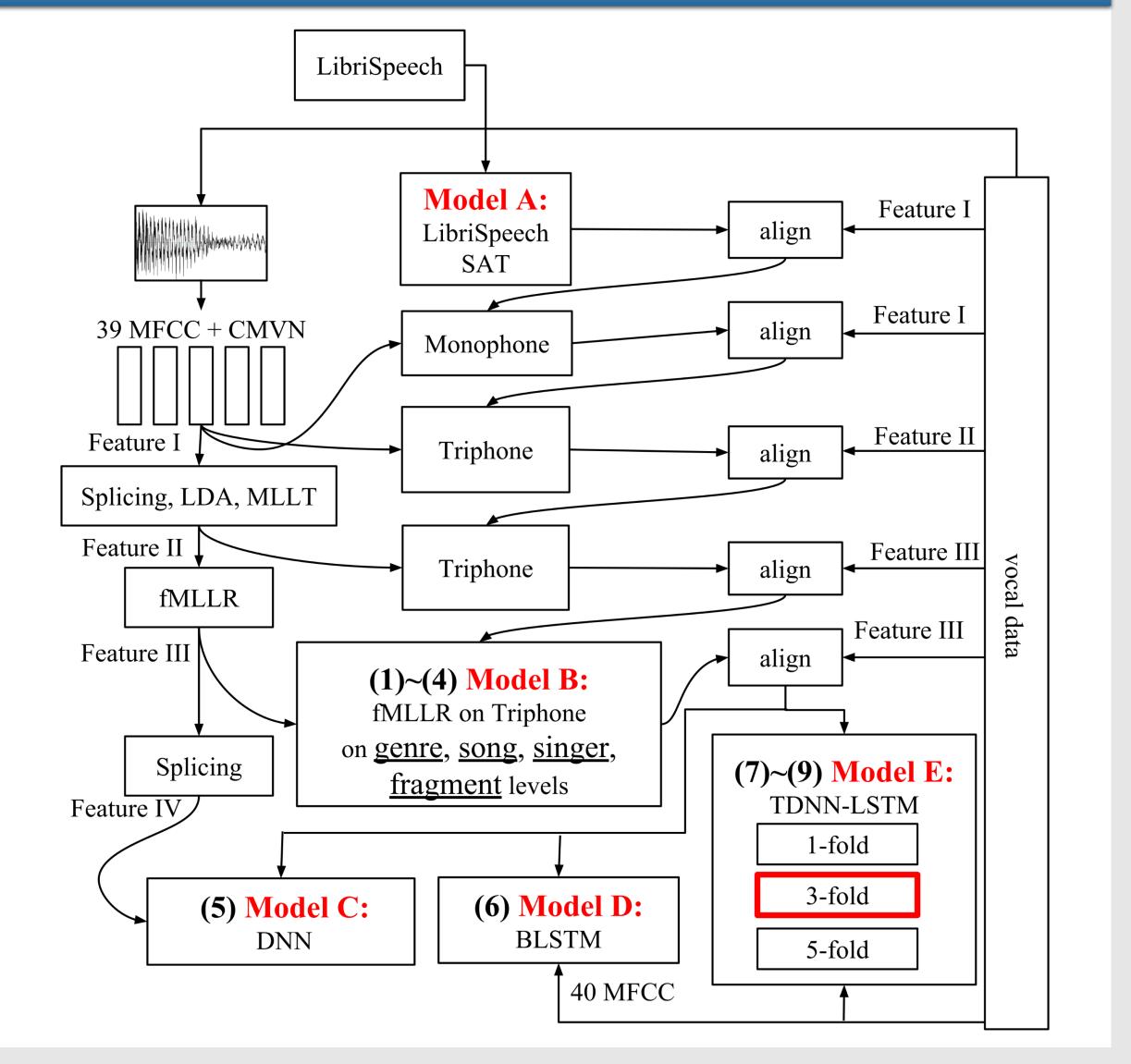
	# Songs	# Singers	# Frag.	Dur. (min)
Training Set	95	49	640	271
Testing Set	15	13	97	42.8

>Linguistic Corpus

LibriSpeech: 803M words / 40M sentences

Lyrics: 129.8M words / 574k pieces

4. System Structure

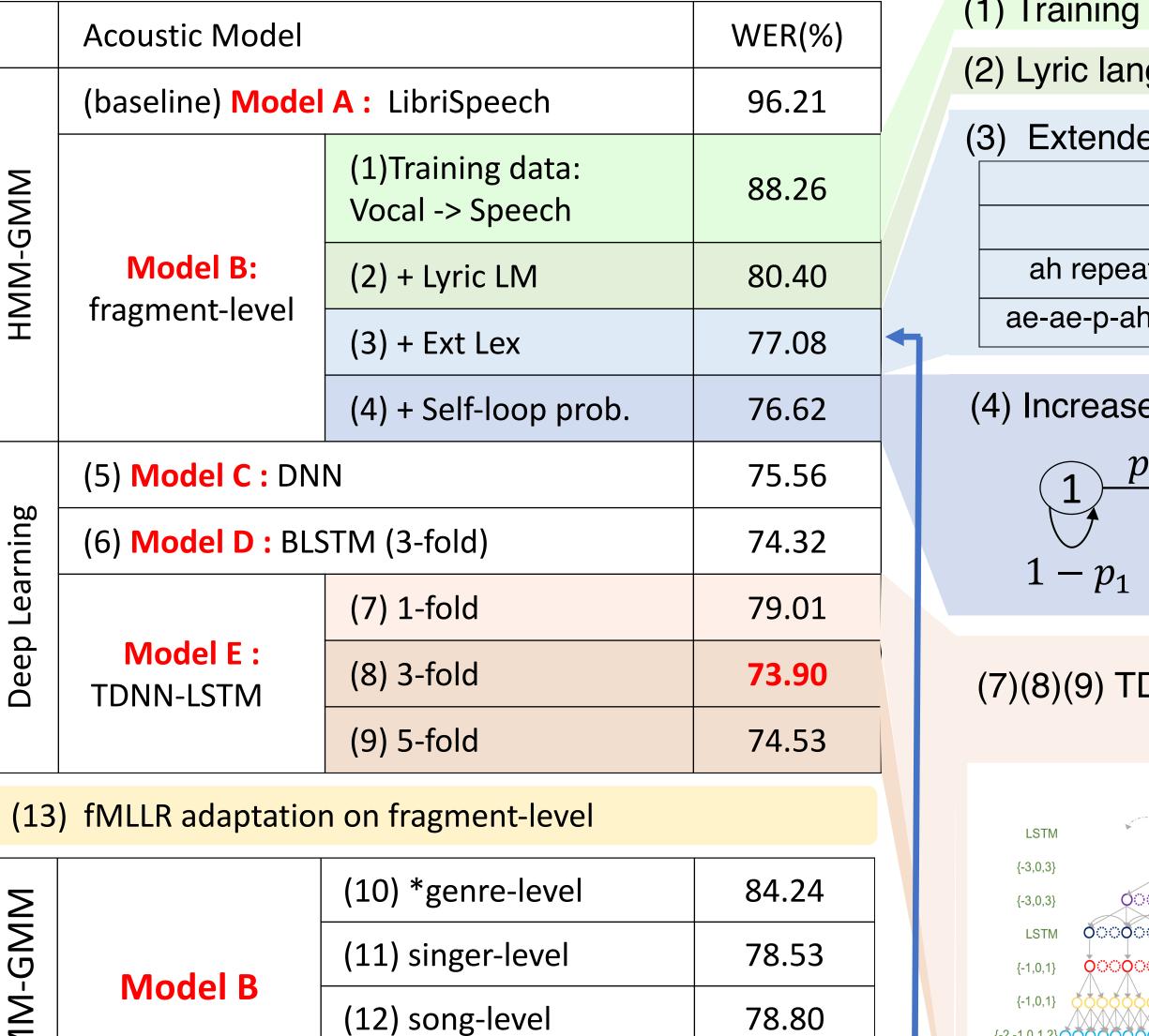


3. Difficulties of Recognition

- Word repetition (e.g. oh oh oh) and meaning less word (e.g. oh)
- Highly flexible pitch contours with much wider range
- Different acoustic characteristics of the same phoneme at different pitch levels

1000Hz pitch contour 🚚 431.8Hz 347.5Hz 0 Hz 75 Hz 0.74 sec — (1) pitch: 324.5Hz (2) pitch: 374.2Hz (3) pitch: 423.6Hz

5. Proposed Approaches and Experiments



77.08

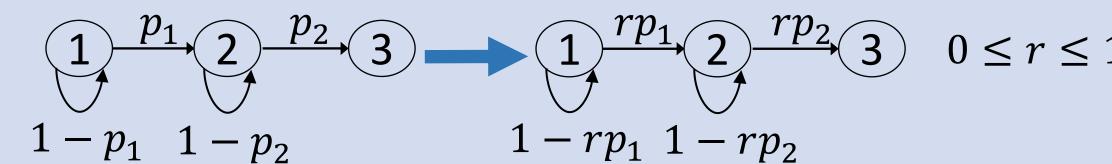
(13) fragment-level

Prolonged phoneme duration with varying pitch

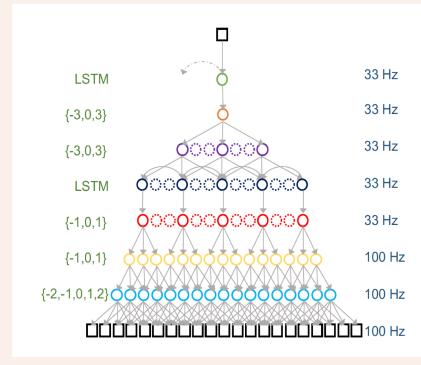
- (1) Training data: speech -> vocal
- (2) Lyric language model
- (3) Extended lexicon (vowel can be repeated or not)

Apple : ae-p-ah-l					
ae repeated		ae not repeated			
ah repeated	ah not repeated	ah repeated	ah not repeated		
ae-ae-p-ah-ah-l	ae-ae-p-ah-l	ae-p-ah-ah-l	ae-p-ah-l		

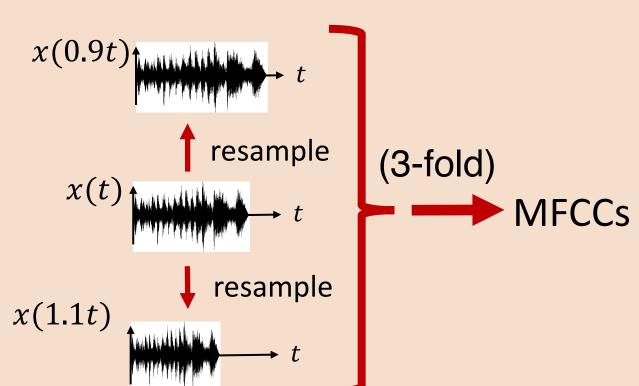
(4) Increased self-loop probability (for vowels HMM)



(7)(8)(9) TDNN-LSTM



(8)(9) 3-fold : resampled expand / compressed in time for speed perturbation at ratio 0.9,1,1.1



6.Conclusion

- 3-fold TDNN-LSTM is the best model.
- The achieved WER was relatively high compared to experiences in speech recognition.
- The results may be better with more training data.

^{*}genre: pop, electronic, rock, hiphop, R&B