
An Efficient GPU Implementation of a Multirate Resampler for Multi-carrier Systems
December 14 – 16, 2015

Scott C. Kim1 and Shuvra S. Bhattacharyya1,2
1. University of Maryland – College Park, MD, USA2. Tampere University of Technology, Finland

{sckim, ssb}@umd.edu



Introduction
 Sample rate conversion (SRC) plays a vital role in modern communication systems
 Tight coupling between sampling rates and data rates
Supports different data rates, clock speeds, etc.
Fixed clock vs. tunable clock

 Simple SRC
 Integer up or down sampling (interpolation or decimation)
Rational resampling – combined up and down sampling

 Arbitrary or asynchronous SRC (ASRC)
Dynamic re-computation of fractional resampling points in a single stage
 Tradeoff: cost and complexity

2



Motivation
 A flexible, high performance, and resource efficient resampler for various data rates is desired
 Utilize graphics processing units (GPUs)

Compared to hardware-based resamplers (ASIC/FPGAs)
 Streaming data in h/w vs. array of data (available) in s/w

 Wide bandwidth (BW) processing for high data rate systems desired
 100’s of MHz of BW and over Gbps throughput desired
Challenge: spectrum fragmentations (900 MHz, 1800 MHz, etc.)
Carrier/band aggregation available

 Intra-band vs. inter-band aggregation
 Use GPU as a real-time, software radio

 High throughput and low latency

3



Background – Resampling 
 Rational resampling concept

 Interpolation (reconstruction) by P
Upsample (i.e., zero stuffing) then filter (reject images)

 Decimation (resampling) by Q
Filter (reject adjacent signals), then downsample (i.e., discard)

Combine two integer resamplers = fractional resampling
Overall ratio, R = P / Q

 Efficient multi-rate resampling available
 Using polyphase filter bank (PFB) structure [1, 3, 4, 5]

 Avoid ratios involving co-prime integers that are in the hundreds (or more) — e.g., R = 766/500
 Multi-stage resampling, e.g., 3/5 then 2/3, etc.

 Simpler but adds delays

4



Background – Resampling 
 Polyphase rational resampler

Combined interpolation and decimation using a single filter

Polyphase Filter Bank(P x M) Q:1
Data IN, x(n)

1:P

M subfilter taps

Data OUT, y(m)

5



Background — CUDA
 NVIDIA’s parallel programming language

 Based on SIMT architecture
 Memory hierarchy

 Registers, shared memory, local memory, constant memory, global memory
 Scalable kernel dimensions (1D/2D/3D): 

 thread, block, grid
 Use coalescing or grouping for faster/linear access
 Minimize data transfers between CPU and GPU
 Use multiples of a warp (32 threads) to spawn threads
 Floating point supported: 

 single (32-bit) and double (64-bit) precision
 Performance tuning via occupancy calculator and visual profiler

6



CUDA Overview
Hardware layout

Kernel layout

7



Related Work
 Multicore acceleration of resampler [8, 9, 10]
 GPU-based ASRC [11, 12]

 Real-time, high throughput
 Texture memory based ASRC [12]

 FPGA/VLSI-based implementation [13, 14, 15]
 Performance criteria met via system clock speed, resource usage (block RAM, multipliers, etc.)

 GPU-based SRC
 Simple, efficient, effective all software-based solution
 Non-custom, commercially-available device
 Processes multiple channels and bands simultaneously

Realizes CA using a single GPU for baseband processing

8



GPU-based Multi-carrier Resampler
 A single stage resampler

 Interpolate, filter, then decimate in an integrated kernel
 Entire operation contained within a block of threads

 Store filter coefficients in constant memory (CM)
 Fast, read-only broadcasting (cached)

 Eliminate commutator approach
 Vector accessing and vector-matrix multiplication 

 1 thread for 1 multiply-accumulate (MAC)
 Instantiates fused multiply-add (FMA) for speed and accuracy

 Address irregular data access used by polyphase filter in GPU
 Data is loaded column-wise but operated on row-wise

9



Channel NC-1

Channel 0
Channel 1

Samples (x-axis)
Ch

an
ne

l In
de

x (y
-ax

is)

M input samples

output, y[k]

1 thread = 1 MAC unit, k

input samples, x[n]
M samples M samples

filter coefficients

10



Implementation and Experimental Setup
 Target 3GPP radio frame duration of 10 ms
 Resample 10 MHz LTE signal from 25.6 MHz to 15.36 MHz

 Resampling ratio, R = 3/5
 Use equiripple FIR filter

 96 taps, decomposed to P = 3 by M = 32
 70 dB attenuation, 0.3 dB passband ripple

 Use desktop NVIDIA GPU, GTX 680, 780 Ti, and 970 (reference)
CUDA toolkit version 6.5
 32-bit, complex, floating-point precision throughout
 A block dim = 256 threads in x-direction, 3 threads in y-direction, total 768 threads per block (TPB)

 1,000 blocks in x-direction, NC channels in y-direction

11



Results 1 – Single Channel Interpolation

 NVIDIA’s embedded GPU/SoC, Tegra K1 shown for comparison only, not suitable for real-time operation
 However, significant decrease power consumption (<10 W)

 Discrete GPUs ran under target latency of 10 ms
w/o data transfer ran under LTE slot time of 0.5 ms

12
GPU with data transfer without data transfer 

GTX 680 1.967 ms / 260.32 MSps 0.294 ms / 1,742.16 MSps
GTX 780 Ti 2.331 ms / 219.64 MSps 0.177 ms / 2,889.13 MSps
GTX 970 2.356 ms / 217.29 MSps 0.207 ms / 2,474.86 MSps
Tegra K1 16.82 ms / 30.437 MSps 6.532 ms / 78.38 MSps



Results 2 – Single Channel Resampling 
GPU with data transfer without data transfer 

GTX 680 0.881 ms / 580.93 MSps 0.306 ms / 1,671.72 MSps
GTX 780 Ti 0.944 ms / 541.89 MSps 0.189 ms / 2,712.78 MSps
GTX 970 0.959 ms / 533.51 MSps 0.224 ms / 2,284.73 MSps
Tegra K1 8.889 ms / 57.59 MSps 6.319 ms / 81.02 MSps

13

 Resource usage of GTX 970 (reference GPU)
GM load efficiency 100% (from 0%)
GM store efficiency 73% (from 0%)

Occasional bank conflict in SM and index transposing
 Occupancy calculator – block size, registers, SM usage, etc.

 Theoretical 75%, achieved 72%
 No register spills
 Both kernels utilized FMA operations



Results 3 – Interpolator (All Channels)14

• Aggregation of channels up to 100 MHz (ten 10 MHz channels)
0 2 4 6 8 10number of channels

0

0.5

1

1.5

2

2.5

3

tim
e (

ms
ec)

Plot of GPU interpolator run-time vs. channels

GTX 680GTX 780TIGTX 970



Results 4 – Resampler (All Channels)15

• Note: data transfer time not included (all GPU baseband processing)
0 2 4 6 8 10number of channels

0

0.5

1

1.5

2

2.5

3

3.5

tim
e (

ms
ec)

Plot of GPU resampler run-time vs. channels
GTX 680GTX 780TIGTX 970



Conclusion
 Introduced a novel, efficient GPU-based rational resampler
 For multiple channels and bands

 Utilize GPU’s 3D architecture for CA
 A single integrated filter design

 Elimination of commutator approach via array indexing
 Addressed irregular memory access patterns in polyphase filtering

 Drastic improvement of global memory efficiency from 0%
 Achieved objectives of high throughput and low latency

 High throughput achieved, over 1.5 GSps
 All the kernels ran well below 10 ms target latency

16



Questions?


