
An Efficient GPU Implementation of a Multirate Resampler for Multi-carrier Systems
December 14 – 16, 2015

Scott C. Kim1 and Shuvra S. Bhattacharyya1,2
1. University of Maryland – College Park, MD, USA2. Tampere University of Technology, Finland

{sckim, ssb}@umd.edu



Introduction
 Sample rate conversion (SRC) plays a vital role in modern communication systems
 Tight coupling between sampling rates and data rates
Supports different data rates, clock speeds, etc.
Fixed clock vs. tunable clock

 Simple SRC
 Integer up or down sampling (interpolation or decimation)
Rational resampling – combined up and down sampling

 Arbitrary or asynchronous SRC (ASRC)
Dynamic re-computation of fractional resampling points in a single stage
 Tradeoff: cost and complexity

2



Motivation
 A flexible, high performance, and resource efficient resampler for various data rates is desired
 Utilize graphics processing units (GPUs)

Compared to hardware-based resamplers (ASIC/FPGAs)
 Streaming data in h/w vs. array of data (available) in s/w

 Wide bandwidth (BW) processing for high data rate systems desired
 100’s of MHz of BW and over Gbps throughput desired
Challenge: spectrum fragmentations (900 MHz, 1800 MHz, etc.)
Carrier/band aggregation available

 Intra-band vs. inter-band aggregation
 Use GPU as a real-time, software radio

 High throughput and low latency

3



Background – Resampling 
 Rational resampling concept

 Interpolation (reconstruction) by P
Upsample (i.e., zero stuffing) then filter (reject images)

 Decimation (resampling) by Q
Filter (reject adjacent signals), then downsample (i.e., discard)

Combine two integer resamplers = fractional resampling
Overall ratio, R = P / Q

 Efficient multi-rate resampling available
 Using polyphase filter bank (PFB) structure [1, 3, 4, 5]

 Avoid ratios involving co-prime integers that are in the hundreds (or more) — e.g., R = 766/500
 Multi-stage resampling, e.g., 3/5 then 2/3, etc.

 Simpler but adds delays

4



Background – Resampling 
 Polyphase rational resampler

Combined interpolation and decimation using a single filter

Polyphase Filter Bank(P x M) Q:1
Data IN, x(n)

1:P

M subfilter taps

Data OUT, y(m)

5



Background — CUDA
 NVIDIA’s parallel programming language

 Based on SIMT architecture
 Memory hierarchy

 Registers, shared memory, local memory, constant memory, global memory
 Scalable kernel dimensions (1D/2D/3D): 

 thread, block, grid
 Use coalescing or grouping for faster/linear access
 Minimize data transfers between CPU and GPU
 Use multiples of a warp (32 threads) to spawn threads
 Floating point supported: 

 single (32-bit) and double (64-bit) precision
 Performance tuning via occupancy calculator and visual profiler

6



CUDA Overview
Hardware layout

Kernel layout

7



Related Work
 Multicore acceleration of resampler [8, 9, 10]
 GPU-based ASRC [11, 12]

 Real-time, high throughput
 Texture memory based ASRC [12]

 FPGA/VLSI-based implementation [13, 14, 15]
 Performance criteria met via system clock speed, resource usage (block RAM, multipliers, etc.)

 GPU-based SRC
 Simple, efficient, effective all software-based solution
 Non-custom, commercially-available device
 Processes multiple channels and bands simultaneously

Realizes CA using a single GPU for baseband processing

8



GPU-based Multi-carrier Resampler
 A single stage resampler

 Interpolate, filter, then decimate in an integrated kernel
 Entire operation contained within a block of threads

 Store filter coefficients in constant memory (CM)
 Fast, read-only broadcasting (cached)

 Eliminate commutator approach
 Vector accessing and vector-matrix multiplication 

 1 thread for 1 multiply-accumulate (MAC)
 Instantiates fused multiply-add (FMA) for speed and accuracy

 Address irregular data access used by polyphase filter in GPU
 Data is loaded column-wise but operated on row-wise

9



Channel NC-1

Channel 0
Channel 1

Samples (x-axis)
Ch

an
ne

l In
de

x (y
-ax

is)

M input samples

output, y[k]

1 thread = 1 MAC unit, k

input samples, x[n]
M samples M samples

filter coefficients

10



Implementation and Experimental Setup
 Target 3GPP radio frame duration of 10 ms
 Resample 10 MHz LTE signal from 25.6 MHz to 15.36 MHz

 Resampling ratio, R = 3/5
 Use equiripple FIR filter

 96 taps, decomposed to P = 3 by M = 32
 70 dB attenuation, 0.3 dB passband ripple

 Use desktop NVIDIA GPU, GTX 680, 780 Ti, and 970 (reference)
CUDA toolkit version 6.5
 32-bit, complex, floating-point precision throughout
 A block dim = 256 threads in x-direction, 3 threads in y-direction, total 768 threads per block (TPB)

 1,000 blocks in x-direction, NC channels in y-direction

11



Results 1 – Single Channel Interpolation

 NVIDIA’s embedded GPU/SoC, Tegra K1 shown for comparison only, not suitable for real-time operation
 However, significant decrease power consumption (<10 W)

 Discrete GPUs ran under target latency of 10 ms
w/o data transfer ran under LTE slot time of 0.5 ms

12
GPU with data transfer without data transfer 

GTX 680 1.967 ms / 260.32 MSps 0.294 ms / 1,742.16 MSps
GTX 780 Ti 2.331 ms / 219.64 MSps 0.177 ms / 2,889.13 MSps
GTX 970 2.356 ms / 217.29 MSps 0.207 ms / 2,474.86 MSps
Tegra K1 16.82 ms / 30.437 MSps 6.532 ms / 78.38 MSps



Results 2 – Single Channel Resampling 
GPU with data transfer without data transfer 

GTX 680 0.881 ms / 580.93 MSps 0.306 ms / 1,671.72 MSps
GTX 780 Ti 0.944 ms / 541.89 MSps 0.189 ms / 2,712.78 MSps
GTX 970 0.959 ms / 533.51 MSps 0.224 ms / 2,284.73 MSps
Tegra K1 8.889 ms / 57.59 MSps 6.319 ms / 81.02 MSps

13

 Resource usage of GTX 970 (reference GPU)
GM load efficiency 100% (from 0%)
GM store efficiency 73% (from 0%)

Occasional bank conflict in SM and index transposing
 Occupancy calculator – block size, registers, SM usage, etc.

 Theoretical 75%, achieved 72%
 No register spills
 Both kernels utilized FMA operations



Results 3 – Interpolator (All Channels)14

• Aggregation of channels up to 100 MHz (ten 10 MHz channels)
0 2 4 6 8 10number of channels

0

0.5

1

1.5

2

2.5

3

tim
e (

ms
ec)

Plot of GPU interpolator run-time vs. channels

GTX 680GTX 780TIGTX 970



Results 4 – Resampler (All Channels)15

• Note: data transfer time not included (all GPU baseband processing)
0 2 4 6 8 10number of channels

0

0.5

1

1.5

2

2.5

3

3.5

tim
e (

ms
ec)

Plot of GPU resampler run-time vs. channels
GTX 680GTX 780TIGTX 970



Conclusion
 Introduced a novel, efficient GPU-based rational resampler
 For multiple channels and bands

 Utilize GPU’s 3D architecture for CA
 A single integrated filter design

 Elimination of commutator approach via array indexing
 Addressed irregular memory access patterns in polyphase filtering

 Drastic improvement of global memory efficiency from 0%
 Achieved objectives of high throughput and low latency

 High throughput achieved, over 1.5 GSps
 All the kernels ran well below 10 ms target latency

16



Questions?


