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INTRODUCTION 1
• Scene image datasets consist of thousands of different

size images with size of the order of 106 pixels. Resizing
these images to a fix size leads to loss of scene informa-
tion.

• Images are fed to pre-trained CNN in their true size
by considering the architecture only upto last convolu-
tional pooling layer.

• A deep spatial pyramid matching kernel compute simi-
larity score between two different size images using fea-
ture maps from last convolutional pooling layer of a pre-
trained CNN.

• Reduced virtual features (RVFs) are extracted from the
obtained kernel matrix and classification is performed
in block sparse representation (BSR) framework.

DEEP SPATIAL PYRAMID MATCHING KERNEL(DSPMK) 2 ALGORITHM 1- KDS PMK(Xm,Xn) 3
Inputs:
(i) Feature maps set Xm and Xn, where
Xm = {xm1, ..., xmi, ..., xm f }; where xmi ∈ R

mp×mq

Xn = {xm1, ..., xni, ..., xn f }; where xni ∈ R
np×nq

(ii) L: number of pyramid levels.
1: Procedure:
2: for l=0 to L − 1 do
3: Divide each feature map of Xm into 22l blocks.
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4: Apply sum pooling over each block such that

xl
mi( j) =

∑
u
∑

v xl
mi( j)(u, v)

Xl
m =

[xl
m1(1)...x

l
m1(22l)

, ..., xl
mi(1)...x

l
mi(22l)

, ..., xl
m f (1)...x

l
m f (22l)

]

∈ R(22l× f )×1.
5: `1- normalize the generated feature vector Xl
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6: Compute intermediate matching score using his-

togram intersection function
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7: end for
8: Compute final matching score between Xm and Xn

KDPS MK =
L−2∑
l=0

1
2(L−l−1) (S l − S l+1) + S L−1.

Outputs:
(i) KDS PMK(Xm,Xn).
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REDUCED VIRTUAL FEATURES 4

• Compute Ktrain and k(.,Xtest) using kernel function
KDS PMK(., .) from ALGORITHM 1.

• Apply SVD decomposition over Ktrain,
Ktrain = UΣNU

>.

• Generate the reduced virtual features of dimension d
(d << N)

ψ̂
d
train = Σd

− 1
2U>Ktrain,

ŷd
test = Σd

− 1
2U>k(.,Xtest),

where, Σd = ΣN(1 : d, 1 : N).

BSR BASED CLASSIFICATION 5

• We consider the dictionary formed from RVFs training
data (ψ̂

d
train ∈ R

d×N) of all c scene classes. Block sparse
representation for the test feature ŷd

test is obtained by
solving:

α̂ = argmin
α

λ
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2
2

• Label for test signal ŷd
test is given by
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test) = argmin

i=1,2,...,c
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2
2.

where,
ξi =

{
α̂[ j], ∀ j ∈ ithclass
0, otherwise

DATASETS 6

(i) Vogel Schiele dataset consists of 6 semantic classes,
namely, ‘coast’, ‘river’, ‘forest’, ‘mountain’, ‘open-country’
and ‘sky-cloud’ with total of 700 images.

(ii) MIT-8 scene dataset comprises of 8 scene classes,
namely, ‘tall building’, ‘street’, ‘inside-city’, ‘highway’,
‘coast’, ‘mountain’, ‘forest’ and ‘open-country’ with total
of 2688 images.

(iii) MIT-67 dataset is an indoor scene dataset with total
of 15620 scene images having 67 classes. This is quite
challenging dataset as interclass variation is very less.

(iv) SUN-397 dataset is a very huge dataset for scene clas-
sification with 397 classes including nature, indoor and ur-
ban categories.

CLASSIFICATION RESULTS 7

VGGNet-16 architecture
pre-trained using

Vogel-Schiele MIT-8 scene MIT-67 SUN-397
d = 300, N = 559 d = 300, N = 800 d = 1000, N = 5360 d = 2000, N = 19850
q = 1 q = 2 q = 1 q = 2 q = 1 q = 2 q = 1 q = 2

ImageNet dataset 84.22 84.16 94.06 94.39 73.16 74.82 51.15 52.67
Places-205 dataset 84.23 84.64 94.82 95.00 78.81 80.01 58.92 59.73
Places-365 dataset 83.56 83.65 94.90 95.11 77.41 78.92 59.81 60.63

Classification accuracies using our proposed approach (DSPMK + RVFs + BSRC) on different datasets. Base features for
the proposed method are extracted using VGGNet-16 which is pre-trained network on ImageNet, Places-205 and Places-
365 datasets. d : RVF dimension, N: total training examples. Results are shown for BSRC with `q norm (q = 1, 2).

CONCLUSION 8
• A novel dynamic kernel known as deep spatial pyramid

matching kernel (DSPMK) is proposed to generate ker-
nel matrix.

• Reduced virtual features (RVFs) representation is ob-
tained by diagonalizing the kernel matrix. Dictionary
is built using the RVFs obtained from training images as
atoms.

• Classification of test image is performed in sparse
framework by imposing block sparsity constraint. The
results obtained are better despite reduced size with the
added advantage that no training is required.


