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in block sparse representation (BSR) framework. £,- normalize the generated feature vector X',
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(i) Vogel Schiele dataset consists of 6 semantic classes, Compute intermediate matching score using his-

namely, ‘coast’, ‘river’, ‘forest’, ‘mountain’, ‘open-country’ togram intersection function

data (&iain € R™) of all ¢ scene classes. Block sparse and ‘sky-cloud” with total of 700 images. [2
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Apply SVD decomposition over Ky, representation for the test feature y¢,, is obtained by P i itk

K, . =UZvU". solving;: (ii) MIT-8 scene dataset comprises of 8 scene classes, . end for

. . namely, ‘tall building’, ‘street’, ‘inside-city’, ‘highway’, . Compute final matching score between X,, and X,
Generate the reduced virtual features of dimension d ¢ = arsiin AZ @il + Fies = Wiraineel ‘coast’, ‘mountain’, ‘forest” and ‘open-country” with total L-2

o
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~d I “ .l . . , Outputs:
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label(§%,,) = argmin ||§%  — 4, . &5 of 15620 scene images having 67 classes. This is quite
i=1,2,....c challenging dataset as interclass variation is very less.

Compute K., and k(.,X,.y,) using kernel function We consider the dictionary formed from RVFs training
KDSPMK(-» ) from ALGORITHM 1.

ytest — Zd_j(uTk( Xiest),

where, X,=3Zy(l:d,1:N).
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