Motivation
 State of the art
 Proposed approach
 Experiment: Singing voice separation
 Discussion and summary

 0
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Semi-Supervised Adversarial Audio Source Separation applied to Singing Voice Extraction

Daniel Stoller¹, Sebastian Ewert², Simon Dixon¹

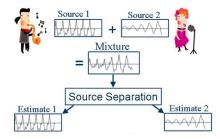
¹Centre for Digital Music Queen Mary University London

²Spotify

MLSP-L8: Deep Learning III ICASSP 19.04.2018

Motivation •	State of the art 00	Proposed approach	Experiment: Singing voice separation	Discussion and summary 000
Audio	source se	paration		

- Task: Recover sources from mixtures
- Example: Music instrument separation:



Motivation Sta

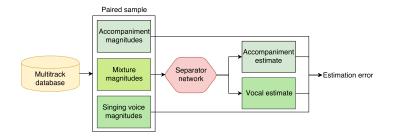
State of the art Propo

Proposed approach

Experiment: Singing voice separation 000

Discussion and summary 000

Current state of the art [5, 3, 1]



- Training on multitrack datasets
- Neural network
- Discriminative, MSE loss

•0

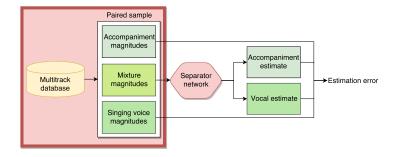
State of the art

Proposed approach

Experiment: Singing voice separation

Discussion and summary

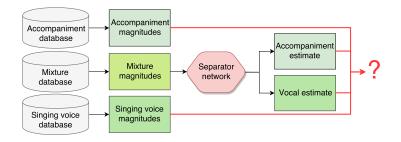
Current state of the art [5, 3, 1]



• Training on multitrack datasets (small \Rightarrow overfitting!)

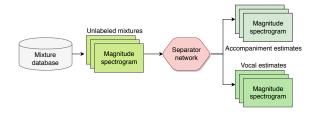
- Neural network
- Discriminative, MSE loss

Motivation 0	State of the art ○●	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Our g	oal			

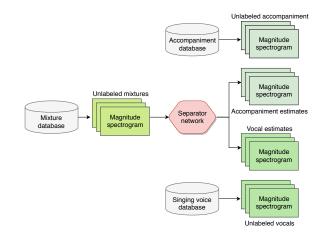


- \Rightarrow How to also learn from unpaired mixtures and sources?
 - Random mixing ignores source correlations [4, 2]

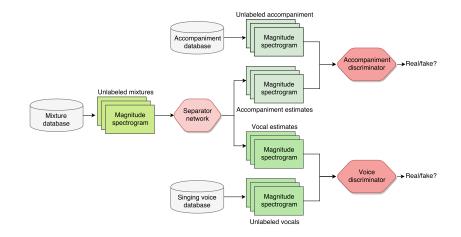
Motivation 0	State of the art 00	Proposed approach ●000	Experiment: Singing voice separation	Discussion and summary
Theoretical fr	amework			
Intuiti	on			



Motivation 0	State of the art 00	Proposed approach ●000	Experiment: Singing voice separation	Discussion and summary
Theoretical fr	amework			
Intuiti	on			



Motivation 0	State of the art 00	Proposed approach ●000	Experiment: Singing voice separation	Discussion and summary
Theoretical fr	ramework			
Intuiti	on			



Motivation 0	State of the art 00	Proposed approach 0●00	Experiment: Singing voice separation	Discussion and summary
Theoretical fr	ramework			
Deriva	tion of un	nsupervised	loss	

• For optimal separator: $q_{\phi}(s^k|m) = p(s^k|m)$

 Motivation
 State of the art
 Proposed approach
 Experiment: Singing voice separation
 Discussion and summary

 0
 00
 000
 000
 000
 000

Derivation of unsupervised loss

- For optimal separator: $q_{\phi}(s^k|m) = p(s^k|m)$
 - $E_{m \sim p_{data}} q_{\phi}(s^k | m) = E_{m \sim p_{data}} p(s^k | m)$ Overall separator output = Source distribution

Motivation 0	State of the art 00	Proposed approach 0●00	Experiment: Singing voice separation	Discussion and summary
Theoretical fra	amework			
D ·		• •	1	

Derivation of unsupervised loss

• For optimal separator: $q_{\phi}(s^k|m) = p(s^k|m)$

$$\begin{array}{lcl} E_{m\sim p_{\text{data}}} \ q_{\phi}(s^k|m) & = & E_{m\sim p_{\text{data}}} \ p(s^k|m) \\ & \overset{\text{out}}{} q_{\phi}^k & = & p_{\text{s}}^k \end{array}$$

Motivation 0	State of the art 00	Proposed approach 0●00	Experiment: Singing voice separation	Discussion and summary
Theoretical fra	amework			

Derivation of unsupervised loss

• For optimal separator: $q_{\phi}(s^k|m) = p(s^k|m)$

$$E_{m \sim p_{\mathsf{data}}} q_{\phi}(s^k | m) = E_{m \sim p_{\mathsf{data}}} p(s^k | m)$$

 $\overset{\operatorname{out}}{\overset{\operatorname{out}}{q_{\phi}^k}} = p_{\mathsf{s}}^k$

- Necessary condition for optimal separator
- Loss: Minimise divergence between source outputs: $L_{u} = \sum_{k=1}^{K} D[^{out}q_{\phi}^{k} || p_{s}^{k}]$

Motivation 0	State of the art	Proposed approach 00●0	Experiment: Singing voice separation	Discussion and summary
Theoretical fra	amework			
Overal	l approacl	h		

• Supervised loss: MSE between estimate and ground truth

Motivation 0	State of the art	Proposed approach 00●0	Experiment: Singing voice separation 000	Discussion and summary
Theoretical fra	amework			
Overal	l approacl	h		

- Supervised loss: MSE between estimate and ground truth
- Unsupervised loss:

•
$$L_{u} = \sum_{k=1}^{K} D[\operatorname{out} q_{\phi}^{k} || p_{s}^{k}]$$

• L_{add} : MSE between sum of source estimates and mixture

Motivation 0	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Theoretical fra	amework			
Overal	l approac	h		

- Supervised loss: MSE between estimate and ground truth
- Unsupervised loss:

•
$$L_{u} = \sum_{k=1}^{K} D[\operatorname{out} q_{\phi}^{k} || p_{s}^{k}]$$

- L_{add} : MSE between sum of source estimates and mixture
- Total loss:

 $\textit{L} = \textit{L}_{\rm s} + \alpha \textit{L}_{\rm u} + \beta \textit{L}_{\rm add}$

Motivation State of the art 0 00 Proposed approach

Experiment: Singing voice separation 000

Discussion and summary 000

Implementation using GANs

Divergence minimization with GANs

- Discriminator estimates divergence D between generator and real distribution
- Generator minimises divergence D

Motivation State of the art 0 00 Proposed approach

 $\begin{array}{l} {\sf Experiment: Singing voice separation} \\ {\sf ooo} \end{array}$

Discussion and summary 000

Implementation using GANs

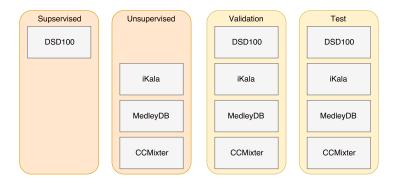
Divergence minimization with GANs

- Discriminator estimates divergence D between generator and real distribution
- Generator minimises divergence D
- Our separator is a conditional generator
- ⇒ We use one discriminator per source to estimate the Wasserstein distance $W[{}^{out}q_{\phi}^{k}||p_{s}^{k}]$

Motivation	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion
			000	

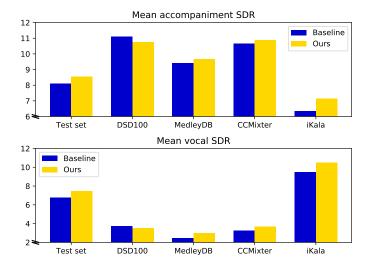
Discussion and summary 000

Experimental setup

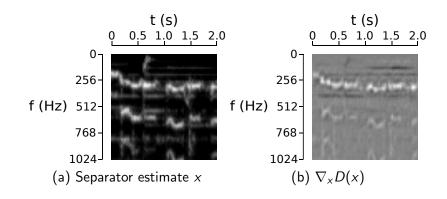


- Avoids dataset bias
- Supervised and semi-supervised training with early stopping
- U-Net as separator, DCGAN as discriminator

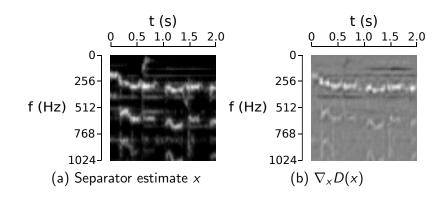
Motivation 0	State of the art 00	Proposed approach	Experiment: Singing voice separation $0 \bullet 0$	Discussion and summary
Result Performai				



Motivation 0	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Result: Qualitativ				



Motivation 0	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Result: Qualitativ				



- \Rightarrow Discriminator appears to work
 - More perceptual loss function?

Motivation 0	State of the art 00	Proposed approach	Experiment: Singing voice separation	Discussion and summary •00
Summ	ary			

- Current SotA methods only use multi-track data
- Our approach also uses solo source recordings
- Performance improvement in singing voice separation experiment
- More perceptual loss? (seeks posterior modes, not means)

Future work	

- More realistic dataset setup
- Multi-instrument separation
- Unified GAN loss

Motivation O	State of the art 00	Proposed approach	Experiment: Singing voice separation	Discussion and summary
End				

Code available at https://github.com/f90/AdversarialAudioSeparation

Thank you for your attention!

 Motivation
 State of the art
 Proposed approach occo
 Experiment: Singing voice separation occ
 Discussion and summary occ

 Image: A. Jansson, E. J. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde.
 Singing voice separation with deep U-Net convolutional networks.
 In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 323–332, 2017.

M. Miron, J. Janer Mestres, and E. Gómez Gutiérrez. Generating data to train convolutional neural networks for classical music source separation.

In Proceedings of the 14th Sound and Music Computing Conference. Aalto University, 2017.

 A. A. Nugraha, A. Liutkus, and E. Vincent. Multichannel audio source separation with deep neural networks.
 PhD thesis, Inria, 2015.
 Motivation
 State of the art
 Proposed approach
 Experim

 0
 00
 0000
 000

Experiment: Singing voice separation

Discussion and summary $\circ \circ \bullet$

S. Uhlich, F. Giron, and Y. Mitsufuji.

Deep neural network based instrument extraction from music. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2135–2139. IEEE, 2015.

 S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and Y. Mitsufuji.
 Improving music source separation based on deep neural

networks through data augmentation and network blending. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 261–265, March 2017.