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Objectives

Learning underlying stochastic dependency
structures among different factors for the data:

•n observations and p variables, p > n possible
•Assuming x1, · · · ,xn iid∼ Np(0,Σ)
•Domain knowledge of some dependency
relationships incorporated

Hub Gaussian Graphical Model

Graphical Model: A set of multivariate joint dis-
tributions associated with a graph G = (V,E)
•V : vertex set, representing variables
•E: edge set, representing conditional
dependency. X satisfies the pairwise
Markov property if Xv and Xw are
independent given XV \{v,w} whenever {v, w} /∈ E

Gaussian Graphical Model: Further assuming
x1, · · · ,xn iid∼ Np(0,Σ), and Θ = Σ−1 is the pre-
cision matrix
•The MLE maximizes

`(X,Θ) = − log det Θ + trace(SΘ)
S is the empirical covariance matrix of X

•Vv and Vw (v 6= w) are conditionally independent
iff Θvw = 0

Graphical Model with Hubs: Nodes that are
connected to a very substantial number of
other nodes in a graph

Θ = V + V T + Z

Figure 1: True and estimated graphs (hubs are blue), with K given (left three) and selected using Graphical Lasso (right three).

Discriminated Hub Graphical Lasso (DHGL)

minimize
Θ∈S,V ,Z

`(X,Θ) + λ1‖Z− diag(Z)‖1 + λ2
∑

j /∈D
‖(V− diag(V))j‖1 + λ3

∑
j /∈D
‖(V− diag(V))j‖q

+ λ4
∑

j∈D
‖(V− diag(V))j‖1 + λ5

∑
j∈D
‖(V− diag(V))j‖q

subject to Θ = V + V T + Z; S = {Θ : Θ � 0 and Θ = ΘT}

λ3 = 1 (blue), 1.5 (green) p = 300, n = 100 p = 150, n = 50, |H| = 10 p = 150, n = 50, |H| = 5

Figure 2: Measures of performances when some (left two) or no hubs are known (right two), using DHGL (solid) or HGL (dashed).

Computation

•Give “loose conditions” (λ4 ≤ λ2, λ5 ≤ λ3) to
nodes in D

•Reduce to HGL in Tan et al. (2014) when D = ∅
•Use Alternating Direction Methods of Multipliers
(ADMM) to solve the convex problem

•Computational complexity: O(p3) per iteration
•Select tunning parameters by minimizing a
BIC-type quantity

DHGL with Known Hub Nodes

1 Use HGL to get the estimated hubs ĤHGL.
2 Set D = K\ ĤHGL, where K is set of known hubs.
3 If D 6= ∅, use DHGL to estimate Θ and get the
estimated hubs ĤDHGL, where λ1, λ2, λ3 remain
the same values as in HGL and λ4, λ5 are selected
using the BIC-type quantity. Then, set
Ĥ = ĤHGL

⋃ ĤDHGL as the set of estimated hubs.
If D = ∅, use the estimation in HGL directly.

DHGL without Known Hub Nodes

1 Use HGL to get the estimated hubs ĤHGL.
2 Adjust regularization parameter λ of GL from
large to small until |ĤGL,λ \ ĤHGL| > 0 and
|ĤGL,λ

⋃ ĤHGL| ≤ max{|ĤHGL| + a, b|ĤHGL|},
where a ∈N+, b > 1 but b ≈ 1. ĤGL,λ is the set
of estimated hubs by GL with the parameter λ.

3 Set D = ĤGL,λ \ ĤHGL which is non-empty.
4 Use DHGL to estimate Θ, where λ1, λ2, λ3, λ4
remain the same values as in HGL and λ5 is
selected using the BIC-type quantity.

Conclusion

•With some hubs known, DHGL outperforms
HGL in estimating the precision matrix.

•Without known hubs, DHGL outperforms
HGL given correct prior information, and
rarely degenerates even if the prior information
is incorrect.


