JOINT SOURCE AND SENSOR PLACEMENT FOR SOUND FIELD CONTROL AASP-P6.10 **BASED ON EMPIRICAL INTERPOLATION METHOD**

Abstract

Loudspeakers and control points (microphones) placem sound field control

- Sound field control: Synthesizing desired sound field inside interest with inverse filters between multiple secondary sou (loudspeakers) and sensors (control points/microphones) Spatial audio and noise cancellation systems
- Positions of loudspeakers and control points/microphones significant effect on control accuracy and filter stability

 ∂D : Secondary source

 Ω : Control region

D

Dense sampling inside Ω - Too many loudspeakers and control points

- Unstable inverse filter due to excessively high correlation of transfer functions

* T T T D D

Sampling only on boun Significant degradation accuracy at several free (forbidden frequency

What is the best placement of loudspeakers and control

- Current methods for source placement
- Method based on Gram-Schmidt orthogonalization [Asa
- Sparse-approximation-based method [Khalilian+ 2016] Most algorithms depend on desired sound field
- Current methods for sensor placement
- Avoid forbidden frequency problem by introducing rigid directional microphones / double layer array of micropho [Poletti 2005, Betlehem+ 2005, Koyama+ 2016]

Most methods can be basically applied to simple arr Source and sensor placements are independently de

Proposed method: Source and sensor placements are join determined for arbitrary geometries of control region and source surface

^{1,2}Shoichi Koyama, ³Gilles Chardon, and ²Laurent Daudet ¹The University of Tokyo, ²Institut Langevin, ESPCI, Université Paris Diderot, CNRS UMR 7587 ³L2S, CentraleSupélec, CNRS, Université Paris-sud, Université Paris-Saclay

	Problem Staten
nent for	- Synthesized sound field by L loudspeakers L Transfer function
de region of ources	$u_{\rm syn}({\bf r},\omega) = \sum_{l=1}^{} d_l(\omega) g_l({\bf r},\omega)$ Driving signal - Minimize square error between synthesized ar desired sound fields
s have	$ \min_{d_l(\omega)} \mathcal{J} = \int_{\mathbf{r}\in\Omega} \left \sum_{l=1}^L d_l(\omega) g_l(\mathbf{r}) - u_{des}(\mathbf{r}, \omega) \right _{l=1} \right _{l=1} \mathcal{J} = 0 $
	Difficult to directly solve due to domain
	- Linear equation by discretizing Ω
	$\mathbf{u}^{des} = \mathbf{Gd} \longrightarrow \mathbf{Derivation of driving sign}$ Transfer function matrix
e surface	Choose the best loudspeaker and control-p to control accuracy and filter stability from o
Ω	Source and Sensor Placeme
	Idea - Empirical Interpolation Method (EIM):
$\widetilde{\partial}D$	•Proposed in the context of numerical analy •Given functional space $\mathcal V$ defined on Ω , ch function and sampling points on Ω to appl
ndary of Ω	by greedy algorithm
on of control equencies	 Apply EIM to source and sensor placement Regard transfer function of each loudspeak
problem)	and control points as sampling points, and
	sensor locations to approximate any transfe candidate locations
	• Greedy algorithm for source / sensor locati
ol points?	between candidate locations
ano+ 1999] 	Input: Candiate locations of loudspeakers \mathbf{r}_l $(l points \mathbf{r}_m \ (m \in \{1, \dots, M\})$, transfer futarget error tolerance ϵ_{tol} Output: Set of indexes of loudspeakers and co
	1: Set $Q = 1$
d baffle /	2: while $\epsilon > \epsilon_{tol}$ do 3: Choose loudspeaker index
nones	$l_Q = \underset{l=1,\dots,L}{\operatorname{arg max}} \ \mathbf{G}_{\cdot,l} - I_{Q-1}(\mathbf{G}_{\mathbf{m}_{Q-1},l})\ $
erray geometry determined	4: Choose control-point index $m_Q = \underset{m=1,,M}{\operatorname{arg max}} \mathbf{G}_{m,l_Q} - (I_{Q-1}(\mathbf{G}_m)) $
ointly	5: Calculate error $\epsilon = \max_{l=1,,L} \ \mathbf{G}_{\cdot,l} - I_{Q-1}(\mathbf{G}_{\mathbf{m}_{Q-1},l})\ _{2}$
d secondary	6: Set $Q = Q + 1$ 7: end while <i>l</i> =1,, <i>L</i> <i>Approximation inverse filter</i>

