

Frequency Estimation for a Mixture of Sinusoids: A Near-Optimal Sequential Approach

B. Mamandipoor*, D. Ramasamy, U. Madhow

ECE Department, University of California, Santa Barbara

December 2015

Outline

- Introduction
- Proposed sequential algorithm
- Stopping criteria: CFAR
- Convergence
- Performance evaluation

You can download a MATLAB implementation of the algorithm here: https://bitbucket.org/wcslspectralestimation/continuous-frequency-estimation/src/NOMP

Formulation

Unit norm sinusoid of frequency $\omega \in [0, 2\pi)$

$$\mathbf{x}(\omega) = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & e^{j\omega} & \dots & e^{j(N-1)\omega} \end{bmatrix}^T$$

Mixture of sinusoids:

Goal: Estimate $\{(g_l, \omega_l), l = 1, 2, \dots, K\}$ and K

DoA Estimation

$$\omega = kd\sin(\theta) \to \mathbf{y} = g\mathbf{x}(\omega)$$

Direction of Arrival estimation \rightarrow Frequency estimation problem

Multipath Channel Estimation

Single Frequency Estimation

Unknown parameters are frequency and complex gain.

Maximum Likelihood: $\max_{\{g,\omega\}} 2\Re\{\mathbf{y}^H g \mathbf{x}(\omega)\} - |g|^2 ||\mathbf{x}(\omega)||^2$

GLRT: first maximize over all possible complex gains, then maximize over frequencies.

$$\max_{g} 2\Re\{\mathbf{y}^{H}g\mathbf{x}(\omega)\} - |g|^{2}||\mathbf{x}(\omega)||^{2} \longrightarrow \hat{g} = \frac{\mathbf{x}(\omega)^{H}\mathbf{y}}{||\mathbf{x}(\omega)||^{2}}$$

Next, we maximize for the frequency: $\max_{\omega} G_{\mathbf{y}}(\omega)$

Where,
$$G_{\mathbf{y}}(\omega) = \frac{|\mathbf{x}(\omega)^H \mathbf{y}|^2}{||\mathbf{x}(\omega)||^2}$$
 Grid
& Refine

Grid & Refine

Newtonized OMP (NOMP)

[1] B. Mamandipoor, D. Ramasamy, U. Madhow, "Newtonized Orthogonal Matching Pursuit: Frequency Estimation over the Continuum," arXiv preprint arXiv:1509.01942, 2015.

Stopping Criteria: CFAR

- Common strategy in detection problems \rightarrow use noise model only
- Criteria: if noise can explain the observation \rightarrow target does not exist!
- We develop a similar criteria for the frequency estimation algorithm:

 $\max_{\omega \in \text{DFT}} G_{\mathbf{y}_{\mathbf{r}}(\mathcal{P}_{m+1})}(\omega) < \tau \qquad \text{Assuming } \mathbf{y}_{\mathbf{r}}(\mathcal{P}_{m+1}) \text{ is pure noise!}$

$$||\mathcal{F}\mathbf{y}_{\mathbf{r}}(\mathcal{P}_{m+1})||_{\infty}^{2} < \tau$$

Probability of false alarm:

$$Pr\{||\mathcal{F}\mathbf{y}_{\mathbf{r}}(\mathcal{P}_{m+1})||_{\infty}^{2} > \tau\} = P_{\mathrm{fa}}$$

Stopping Criteria: CFAR

 $P_{\rm fa}$ is the nominal false alarm rate.

$$\tau = \sigma^2 \log(N) - \sigma^2 \log \log \left(\frac{1}{1 - P_{\text{fa}}}\right)$$

Simulation result: measured false alarm rate is in agreement with the the nominal value.

Probability of Miss and ROC

Taking into account the effect of noise

Ignoring the "interference" from other sinusoids

The resulting ROC turns out to be in remarkable agreement with simulations.

Convergence: bounding # iterations

Empirical Convergence Rate

NOMP – : just a single refinement step for the newly detected sinusoid DOMP : discretize the parameter space and apply OMP

Cyclic refinements has a significant impact on speeding up the convergence!

Performance – Accuracy

Comparison with state-of-the-art algorithm: Atomic norm Soft Thresholding (AST)

[2] B. N. Bhaskar, G. Tang, and B. Recht, "atomic norm denoising with applications to line spectral estimation," arXiv preprint arXiv:1204.0562, 2012

Performance – Speed

Run time of various algorithms over 300 simulation runs (#sinusoids in the mixture =16)

Model Order (K) Estimation

When minimum separation between frequencies is small, Lasso and DOMP make errors!

Questions??