An algorithm for multi subject fMRI analysis based on the SVD and penalized rank-1 matrix approximation

Introduction

- Data-driven methods have been successfully applied to multi-subject fMRI data analysis using temporally or spatially concatenated datasets.
- Temporal concatenation allows for the extraction of group-level spatial activation maps.
- Spatial concatenation leads to the extraction of group-level temporal dynamics.
- Aim of this paper: separation of the joint information (group-level spatial maps) from the subspecific information.

Background

Consider p fMRI datasets denoted by $\mathbf{Y}_i \in$ $\mathbb{R}^{n \times N}$, $i \in [1, p]$, data driven methods with sparsity constraints aim to decompose \mathbf{Y}_i as:

 $\mathbf{Y}_i = \mathbf{D}_i \mathbf{X} + \mathbf{E}$; with $\mathbf{D}_i \in \mathbb{R}^{n \times k}, \mathbf{X} \in \mathbb{R}^{k \times N}$ (1) with l_2 normalized columns of \mathbf{D}_i and a sparse coefficient matrix \mathbf{X} . With temporally concatenated datasets $\mathbf{Y} \in \mathbb{R}^{np \times N}$, a factor model decomposition is performed by solving:

$$\min_{\mathbf{D},\mathbf{X}} ||\mathbf{Y} - \mathbf{D}\mathbf{X}||_{F}^{2} + \lambda \sum_{q=1}^{N} ||\mathbf{x}_{q}||_{1} \text{ s.t. } \forall i, l, ||\mathbf{d}_{il}||_{2} \leq 1$$

$$(2)$$

where $\mathbf{D} \in \mathbb{R}^{np \times k}$, $\mathbf{X} \in \mathbb{R}^{k \times N}$ and \mathbf{x}_{q} is the q^{th} column of \mathbf{X} . The resulting \mathbf{D} and \mathbf{X} matrices contain k dense temporal dynamics and k sparse group level spatial maps (SM) respectively.

Learning SMs using this formulation lacks the ability to distinguish group-level (joint) SMs from subspecific ones.

The Proposed Algorithm

Let $\mathbf{Y} \in \mathbb{R}^{np \times N}$ be the temporally concatenated dataset, the proposed algorithm decomposes it in two steps:

- **1**. Using SVD, decompose **Y** into sum of three low-rank matrices; $\mathbf{Y} = \mathbf{J} + \mathbf{I} + \mathbf{E}$.
- **2**. Refine **J** and **I** into k dense temporal dynamics and sparse spatial maps.

Asif Iqbal & Abd-Krim Seghouane

Department of Electrical and Electronic Engineering Melbourne School of Engineering, The University of Melbourne, Australia

The Proposed Algorithm contd.

To carryout the second stage, we aim to minimize; $\min \frac{1}{2} \|\mathbf{G}_0 - \mathbf{A}\mathbf{B}\|_F^2 + \sum_{m=1}^k \left(\alpha_1 \|\mathbf{b}^m\|_1 + \alpha_2 \, \mathbf{a}_m^\top \, \mathbf{\Omega} \, \mathbf{a}_m \right)$ where \mathbf{a}_m and \mathbf{b}^m are the columns and rows from matrices $\mathbf{A} \in \mathbb{R}^{n \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times N}$ respectively, $\mathbf{\Omega} \in \mathbb{R}^{n \times n} \ [2].$ (3) can be approximately minimized via k penalized rank-1 matrix approximations via matrix deflation, i.e., by replacing \mathbf{G}_0 in (3) by the residual matrix $\mathbf{G}_m = \mathbf{G}_{m-1} - \mathbf{a}_m \mathbf{b}^m$ with $m = [1, \cdots, k]$. Thus, minimizing (3) is equivalent to minimizing

$$\min \frac{1}{2} \| \mathbf{G}_{m-1} - \mathbf{a}_m \mathbf{b}^m \|_F^2 + \alpha_1 \| \mathbf{b}^m \|_1$$

$$+ \alpha_2 \mathbf{a}_m^\top \mathbf{\Omega} \mathbf{a}_m; \quad \text{s.t.} \quad \| \mathbf{a}_m \|_2 = 1$$

$$(4)$$

Using alternating optimization framework, the solution to (4) is found by alternating between

$$\hat{\mathbf{a}}_{m} = (\mathbf{I} \| \mathbf{b}^{m} \|_{2}^{2} + \alpha_{2} \mathbf{\Omega})^{-1} \mathbf{G}_{m-1} \mathbf{b}^{m\top}$$

$$\hat{\mathbf{a}}_{m} = \hat{\mathbf{a}}_{m} / \| \hat{\mathbf{a}}_{m} \|_{2}$$
(5)

$$\hat{\mathbf{b}}^{m} = \operatorname{sgn}(\mathbf{a}_{k}^{\top}\mathbf{G}_{m-1}) \odot \max(0, |\mathbf{a}_{k}^{\top}\mathbf{G}_{m-1}| - \alpha_{1}\mathbf{1}_{N})$$
(6)

Algorithm Overview

Algorithm 1: Proposed Data Driven Method **Input:** Y, p, r_J , r_I , k_J , k_I , α_1 , α_2 , noIt Stage 1: $J \leftarrow 0, I \leftarrow 0$ for it = 1: noIt do | Compute $\mathbf{X} = \mathbf{Y} - \mathbf{I}$, Find **J** as best r_J -rank approx. of **X** using SVD. for i = 1 : p do Compute $\mathbf{Z}_i = \mathbf{Y}_i - \mathbf{J}_i$, Find \mathbf{I}_i as best r_I -rank approx. of \mathbf{Z}_i using SVD. Stage 2: Use Algorithm 2 to refine **J** into k_{J} -rank matrix pairs as $\mathbf{J} = \mathbf{A}^J \mathbf{B}^J$, for i = 1 : p do Use Algorithm 2 to refine \mathbf{I}_i into k_I -rank matrix pairs as $\mathbf{I}_i = \mathbf{A}_i^I \mathbf{B}_i^I$, Output: J, I, A^J , B^J , A_i^I , B_i^I

Table 1: Mean and std dev (Pearson correlation) of most correlated TCs and SMs w.r.t. ground truth as recovered by the proposed algorithm and CODL [1]. over 100 trials.

Algorithm Overview

Simulation Results

Figure 1: The mean Ground Truth (GT) SM and TC correlation coefficients over 100 trials with respect to all recovered $\mathbf{A}^{J}, \mathbf{B}^{J}, \mathbf{A}^{I}_{i}, \mathbf{B}^{I}_{i}$ matrices. SNR = 0 dB.

SNR dB	Algorithm	TCs		SMs	
		Mean	STD	Mean	STD
-10	Proposed	0.99	0.01	0.89	0.05
	CODL	0.95	0.03	0.79	0.05
-15	Proposed	0.98	0.01	0.85	0.06
	CODL	0.87	0.04	0.58	0.21

Figure 2: a) Most correlated average TCs from \mathbf{A}^{J} (*red*) with their respective PTCs (*blue*) recovered by the proposed algorithm. The corresponding correlation coefficients are given above each TC plot. b) Respective activation maps from \mathbf{B}^{J} .

[1] A. Mensch, G. Varoquaux, and B. Thirion. Compressed online dictionary learning for fast resting-state fMRI decomposition. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pages 1282-1285, 2016. [2] A. K. Seghouane and A. Iqbal.

Basis expansions approaches for regularized sequential dictionary learning algorithms with enforced sparsity for fMRI data analysis. IEEE Transactions on Medical Imaging, 36(9):1796-1807, 2017.

THE UNIVERSITY OF MELBOURNE

Real fMRI Results

Figure 3: Default mode network from joint info matrix \mathbf{B}^{J}

References