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Introduction

•Data-driven methods have been successfully ap-
plied to multi-subject fMRI data analysis using
temporally or spatially concatenated datasets.

•Temporal concatenation allows for the extraction
of group-level spatial activation maps.

•Spatial concatenation leads to the extraction of
group-level temporal dynamics.

•Aim of this paper: separation of the joint infor-
mation (group-level spatial maps) from the sub-
specific information.

Background

Consider p fMRI datasets denoted by Yi ∈
Rn×N , i ∈ [1, p], data driven methods with sparsity
constraints aim to decompose Yi as:

Yi = DiX + E; with Di ∈ Rn×k,X ∈ Rk×N (1)
with l2 normalized columns of Di and a sparse co-
efficient matrix X. With temporally concatenated
datasets Y ∈ Rnp×N , a factor model decomposition
is performed by solving:

min
D,X
||Y−DX||2F+λ

N∑
q=1
‖xq‖1 s.t. ∀ i, l, ‖dil‖2 ≤ 1

(2)
where D ∈ Rnp×k, X ∈ Rk×N and xq is the qth col-
umn of X. The resulting D and X matrices contain
k dense temporal dynamics and k sparse group level
spatial maps (SM) respectively.
Learning SMs using this formulation lacks the abil-
ity to distinguish group-level (joint) SMs from sub-
specific ones.

The Proposed Algorithm

Let Y ∈ Rnp×N be the temporally concatenated
dataset, the proposed algorithm decomposes it in two
steps:
1.Using SVD, decompose Y into sum of three
low-rank matrices; Y = J + I + E.

2.Refine J and I into k dense temporal dynamics
and sparse spatial maps.

The Proposed Algorithm contd.

To carryout the second stage, we aim to minimize;

min 1
2
‖G0 −AB‖2

F +
k∑

m=1

(
α1‖bm‖1 + α2 a>m Ω am

)
(3)

where am and bm are the columns and rows from
matrices A ∈ Rn×k and B ∈ Rk×N respectively,
Ω ∈ Rn×n [2].
(3) can be approximately minimized via k penalized
rank-1 matrix approximations via matrix deflation,
i.e, by replacing G0 in (3) by the residual matrix
Gm = Gm−1 − ambm with m = [1, · · · , k]. Thus,
minimizing (3) is equivalent to minimizing

min 1
2
‖Gm−1 − ambm‖2

F + α1‖bm‖1

+α2 a>m Ω am; s.t. ‖am‖2 = 1
(4)

Using alternating optimization framework, the solu-
tion to (4) is found by alternating between

âm = (I ‖bm‖2
2+ α2 Ω)−1 Gm−1bm>

âm =âm/‖âm‖2
(5)

b̂m = sgn(a>k Gm−1)�max(0, |a>k Gm−1| − α11N)
(6)

Algorithm Overview

Algorithm 1: Proposed Data Driven Method
Input: Y, p, rJ, rI, kJ, kI, α1, α2, noIt
Stage 1: J← 0, I← 0
for it = 1 : noIt do
Compute X = Y− I,
Find J as best rJ-rank approx. of X using SVD.
for i = 1 : p do
Compute Zi = Yi − Ji,
Find Ii as best rI-rank approx. of Zi using SVD.

Stage 2:
Use Algorithm 2 to refine J into kJ-rank matrix
pairs as J = AJ BJ ,
for i = 1 : p do
Use Algorithm 2 to refine Ii into kI-rank matrix
pairs as Ii = AI

i BI
i ,

Output: J, I, AJ, BJ, AI
i , BI

i

Algorithm Overview

Algorithm 2: Refinement Algorithm
Input: G0, k, noIt, α1, α2
Initialize A and B from G0,
for m = 1 : k do
for it = 1 : noIt do
use (5) to get am,
use (6) to get bm,
Compute Gm = Gm−1 − ambm,
Store the pair as A(:,m) = am and B(m, :) = bm,

Output: A, B

Simulation Results
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Figure 1: The mean Ground Truth (GT) SM and TC corre-
lation coefficients over 100 trials with respect to all recovered
AJ,BJ,AI

i ,BI
i matrices. SNR = 0 dB.

Table 1: Mean and std dev (Pearson correlation) of most cor-
related TCs and SMs w.r.t. ground truth as recovered by the
proposed algorithm and CODL [1]. over 100 trials.

SNR dB Algorithm
TCs SMs

Mean STD Mean STD

-10
Proposed 0.99 0.01 0.89 0.05
CODL 0.95 0.03 0.79 0.05

-15
Proposed 0.98 0.01 0.85 0.06
CODL 0.87 0.04 0.58 0.21

Real fMRI Results
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Figure 2: a) Most correlated average TCs from AJ (red) with
their respective PTCs (blue) recovered by the proposed algo-
rithm. The corresponding correlation coefficients are given above
each TC plot. b) Respective activation maps from BJ .
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Figure 3: Default mode network from joint info matrix BJ .
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