An algorithm for multi subject fMRI analysis based on the SVD and penalized rank-1 matrix approximation

Asif Iqbal \& Abd-Krim Seghouane

Department of Electrical and Electronic Engineering
Melbourne School of Engineering, The University of Melbourne, Australia

Introduction

Data-driven methods have been successfully applied to multi-subject fMRI data analysis using temporally or spatially concatenated datasets.

- Temporal concatenation allows for the extraction of group-level spatial activation maps.
Spatial concatenation leads to the extraction of group-level temporal dynamics.
- Aim of this paper: separation of the joint information (group-level spatial maps) from the subspecific information.

Background

Consider p fMRI datasets denoted by $\mathbf{Y}_{i} \in$ $\mathbb{R}^{n \times N}, i \in[1, p]$, data driven methods with sparsity constraints aim to decompose \mathbf{Y}_{i} as:
$\mathbf{Y}_{i}=\mathbf{D}_{i} \mathbf{X}+\mathbf{E} ;$ with $\mathbf{D}_{i} \in \mathbb{R}^{n \times k}, \mathbf{X} \in \mathbb{R}^{k \times N}$ (1) with l_{2} normalized columns of \mathbf{D}_{i} and a sparse coefficient matrix \mathbf{X}. With temporally concatenated datasets $\mathbf{Y} \in \mathbb{R}^{n p \times N}$, a factor model decomposition is performed by solving:
$\min _{\mathbf{D}, \mathbf{X}}\|\mathbf{Y}-\mathbf{D} \mathbf{X}\|_{F}^{2}+\lambda \sum_{q=1}^{N}\left\|\mathbf{x}_{q}\right\|_{1}$ s.t. $\forall i, l,\left\|\mathbf{d}_{i l}\right\|_{2} \leq 1$
where $\mathbf{D} \in \mathbb{R}^{n p \times k}, \mathbf{X} \in \mathbb{R}^{k \times N}$ and \mathbf{x}_{q} is the $q^{t h}$ column of \mathbf{X}. The resulting \mathbf{D} and \mathbf{X} matrices contain k dense temporal dynamics and k sparse group level spatial maps (SM) respectively.
Learning SMs using this formulation lacks the ability to distinguish group-level (joint) SMs from subspecific ones.

The Proposed Algorithm
Let $\mathbf{Y} \in \mathbb{R}^{n p \times N}$ be the temporally concatenated dataset, the proposed algorithm decomposes it in two steps:

1. Using SVD, decompose \mathbf{Y} into sum of three low-rank matrices; $\mathbf{Y}=\mathbf{J}+\mathbf{I}+\mathbf{E}$
2. Refine \mathbf{J} and \mathbf{I} into k dense temporal dynamics and sparse spatial maps.

The Proposed Algorithm contd.
To carryout the second stage, we aim to minimize;
$\min \frac{1}{2}\left\|\mathbf{G}_{0}-\mathbf{A B}\right\|_{F}^{2}+\sum_{m=1}^{k}\left(\alpha_{1}\left\|\mathbf{b}^{m}\right\|_{1}+\alpha_{2} \mathbf{a}_{m}^{\top} \boldsymbol{\Omega} \mathbf{a}_{m}\right)$
(3)
where \mathbf{a}_{m} and \mathbf{b}^{m} are the columns and rows from matrices $\mathbf{A} \in \mathbb{R}^{n \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times N}$ respectively, $\Omega \in \mathbb{R}^{n \times n}{ }^{[2]}$.
(3) can be approximately minimized via k penalized rank-1 matrix approximations via matrix deflation, i.e, by replacing \mathbf{G}_{0} in (3) by the residual matrix $\mathbf{G}_{m}=\mathbf{G}_{m-1}-\mathbf{a}_{m} \mathbf{b}^{m}$ with $m=[1, \cdots, k]$. Thus, minimizing (3) is equivalent to minimizing

$$
\begin{align*}
& \min \frac{1}{2}\left\|\mathbf{G}_{m-1}-\mathbf{a}_{m} \mathbf{b}^{m}\right\|_{F}^{2}+\alpha_{1}\left\|\mathbf{b}^{m}\right\|_{1} \tag{4}\\
& \quad+\alpha_{2} \mathbf{a}_{m}^{\top} \boldsymbol{\Omega} \mathbf{a}_{m} ; \text { s.t. }\left\|\mathbf{a}_{m}\right\|_{2}=1
\end{align*}
$$

Using alternating optimization framework, the solution to (4) is found by alternating between

$$
\hat{\mathbf{a}}_{m}=\left(\mathbf{I}\left\|\mathbf{b}^{m}\right\|_{2}^{2}+\alpha_{2} \boldsymbol{\Omega}\right)^{-1} \mathbf{G}_{m-1} \mathbf{b}^{m T}
$$

$$
\hat{\mathbf{a}}_{m}=\hat{\mathbf{a}}_{m} /\left\|\hat{\mathbf{a}}_{m}\right\|_{2}
$$

$\hat{\mathbf{b}}^{m}=\operatorname{sgn}\left(\mathbf{a}_{k}^{\top} \mathbf{G}_{m-1}\right) \odot \max \left(0,\left|\mathbf{a}_{k}^{\top} \mathbf{G}_{m-1}\right|-\alpha_{1} \mathbf{1}_{N}\right)$

Algorithm Overview

Algorithm 1: Proposed Data Driven Method
Input: Y, $p, r_{J}, r_{I}, k_{J}, k_{I}, \alpha_{1}, \alpha_{2}, n o I t$
Stage 1: $\mathbf{J} \leftarrow \mathbf{0}, \mathbf{I} \leftarrow \mathbf{0}$
for $i t=1:$ noIt do
Compute $\mathbf{X}=\mathbf{Y}-\mathbf{I}$
Find \mathbf{J} as best r_{J}-rank approx. of \mathbf{X} using SVD. for $i=1: p$ do
Compute $\mathbf{Z}_{i}=\mathbf{Y}_{i}-\mathbf{J}_{i}$
Find \mathbf{I}_{i} as best r_{I}-rank approx. of \mathbf{Z}_{i} using SVD. Stage 2:
Use Algorithm 2 to refine \mathbf{J} into $k_{J \text {-rank }}$ matrix pairs as $\mathbf{J}=\mathbf{A}^{J} \mathbf{B}^{J}$
for $i=1: p$ do
Use Algorithm 2 to refine \mathbf{I}_{i} into k_{I}-rank matrix pairs as $\mathbf{I}_{i}=\mathbf{A}_{i}^{I} \mathbf{B}_{i}^{I}$,
Output: J, I, $\mathbf{A}^{J}, \mathbf{B}^{J}, \mathbf{A}_{i}^{I}, \mathbf{B}_{i}^{I}$

Algorithm Overview

Algorithm 2: Refinement Algorithm
Input: $\mathbf{G}_{0}, k, n o I t, \alpha_{1}, \alpha_{2}$
Initialize \mathbf{A} and \mathbf{B} from \mathbf{G}_{0},
for $m=1: k$ do
for $i t=1:$ noIt do
use (5) to get \mathbf{a}_{m},
use (6) to get \mathbf{b}^{m}.
Compute $\mathbf{G}_{m}=\mathbf{G}_{m-1}-\mathbf{a}_{m} \mathbf{b}^{m}$
Store the pair as $\mathbf{A}(:, m)=\mathbf{a}_{m}$ and $\mathbf{B}(m,:)=\mathbf{b}^{m}$ Output: A, B

Simulation Results

Figure 1: The mean Ground Truth (GT) SM and TC correlation coefficients over 100 trials with respect to all recovered $\mathbf{A}^{J}, \mathbf{B}^{J}, \mathbf{A}_{i}^{I}, \mathbf{B}_{i}^{l}$ matrices. SNR $=0 \mathrm{~dB}$.

Table 1: Mean and std dev (Pearson correlation) of most correlated TCs and SMs w.r.t. ground truth as recovered by the proposed algorithm and CODL [1]. over 100 trials.
SNR dB Algorithm $\frac{\text { TCs }}{\text { Mean STD Mean STD }}$

10 Proposed $0.99 \quad 0.01 \quad 0.89 \quad 0.05$ $\begin{array}{lllll}\text { CODL } & 0.95 & 0.03 & 0.79 & 0.05\end{array}$ Proposed 0.980 .010 .850 .06
$\begin{array}{llllll}-15 & \text { CODL } & 0.87 & 0.04 & 0.58 & 0.21\end{array}$

Real fMRI Results

Figure 2: a) Most correlated average TCs from \mathbf{A}^{J} (red) with their respective PTCs (blue) recovered by the proposed algorithm. The corresponding correlation coefficients are given above each TC plot. b) Respective activation maps from \mathbf{B}^{J}.

Figure 3: Default mode network from joint info matrix \mathbf{B}^{J}

References

[1] A. Mensch, G. Varoquaux, and B. Thirion Compressed online dictionary learning for fast resting-state fMRI decomposition.
In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pages 1282-1285, 2016.
[2] A. K. Seghouane and A. Iqbal. Basis expansions approaches for regularized sequential dictionary learning algorithms with enforced sparsity for fMRI data analysis. IEEE Transactions on Medical Imaging, 36(9):1796-1807, 2017.

