Introduction

« Data-driven methods have been successfully ap-
plied to multi-subject tMRI data analysis using
temporally or spatially concatenated datasets.

« Temporal concatenation allows for the extraction
of group-level spatial activation maps.

« opatial concatenation leads to the extraction of
eroup-level temporal dynamics.

« Aim of this paper: separation of the joint infor-
mation (group-level spatial maps) from the sub-
specific information.

Background

Consider p tMRI datasets denoted by Y, €&
RN ¢ € [1,p], data driven methods with sparsity
constraints aim to decompose Y, as:

Y; = D,X + E; with D, € R™* X € R (1)

with [, normalized columns of D; and a sparse co-
eficient matrix X. With temporally concatenated
datasets Y € R™*N g factor model decomposition

is performed by solving:

N
mip [ Y =DX[[34+2 3 %[l st Vi, [|dall, < 1
Y :1

q

(2)

where D € R™”** X € RV and X, 18 the q'" col-

umn of X. The resulting D and X matrices contain

k dense temporal dynamics and £ sparse group level
spatial maps (SM) respectively.

Learning SMs using this formulation lacks the abil-

ity to distinguish group-level (joint) SMs from sub-

specific ones.

The Proposed Algorithm

Let Y € R™*Y be the temporally concatenated

dataset, the proposed algorithm decomposes it in two

steps:

1. Using SVD, decompose Y into sum of three

low-rank matrices; Y =J + 1+ E.

2. Refine J and I into £ dense temporal dynamics
and sparse spatial maps.
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The Proposed Algorithm contd.

To carryout the second stage, we aim to minimize;

k
min |G —~ ABf}+ 3 (a[b"]: + a2 a), Q)
(3)
where a,, and b" are the columns and rows from
matrices A € R™* and B € R¥Y respectively;
e R"™™ 2|
(3) can be approximately minimized via k penalized
rank-1 matrix approximations via matrix deflation,
i.e, by replacing Gy in (3) by the residual matrix
G, =G, —a,b" with m =[1,--- ,k|. Thus,
minimizing (3) is equivalent to minimizing

1
min |G- — a,,b"||5 + a1 [[b™|;

(4)

tasa, Qa, st |al=1

Using alternating optimization framework, the solu-
tion to (4) is found by alternating between

a,, = (L|b"]5+ a2 Q)" Gy b™' 5
ay, =2/ |||
b =sgn(a G_1) ® max(0, |a] G,_1| — ar1y)

(6)

Algorithm Overview

Algorithm 1: Proposed Data Driven Method

Input: Y, p, rj, 1, ks, k1, a1, a9, nolt
Stage 1: J <+ 0,1+ 0

for it =1 : nolt do

Compute X =Y — 1,

Find J as best rj-rank approx. of X using SVD.
for:=1:pdo

Compute Z;, = Y; — J;,

 Find I; as best rr-rank approx. of Z; using SVD.
Stage 2:

Use Algorithm 2 to refine J into kj-rank matrix
pairs as J = A’ B,

for:=1:pdo

Use Algorithm 2 to refine I; into k;-rank matrix
pairs as I; = A B,

Output: J. I, A’ B’ AZ-[, BZ-]

Algorithm Overview

Algorithm 2: Refinement Algorithm

Input: Gy, k, nolt, oy, oo

Initialize A and B from Gy,

for m=1:kdo

for it =1 : nolt do

use (5) to get a,,,

‘use (6) to get b™,

Compute G, = G,,-1 — a,, b"

Store the pair as A(:;, m) = a,, and B(m,:) = b",
Output: A, B

Simulation Results
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Figure 1: The mean Ground Truth (GT) SM and TC corre-

lation coefficients over 100 trials with respect to all recovered

A’ B’ Af, Bf matrices. SNR = 0 dB.
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Table 1: Mean and std dev (Pearson correlation) of most cor-
related TCs and SMs w.r.t. ground truth as recovered by the
proposed algorithm and CODL [1]. over 100 trials.

TCs SMs
Mean STD Mean STD
Proposed 0.99 0.01 0.89 0.05

CODL 095 0.03 0.79 0.05
Proposed 0.98 0.01 0.85 0.06
CODL 087 0.04 0.58 0.21
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Figure 2: a) Most correlated average TCs from A’ (red) with

Tongue Right Finger Left Finger

Visual Cue

their respective PTCs (blue) recovered by the proposed algo-
rithm. The corresponding correlation coefficients are given above

each TC plot. b) Respective activation maps from B

Figure 3: Default mode network from joint info matrix B”.
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