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Abstract
This paper is concerned with dynamic system state estimation based on a series of noisy measurement with

the presence of outliers. An incremental learning assisted particle filtering (ILAPF) method is presented, which
can learn the value range of outliers incrementally during the process of particle filtering. The learned range of
outliers is then used to improve subsequent filtering of the future state. Convergence of the outlier range estimation
procedure is indicated by extensive empirical simulations using a set of differing outlier distribution models. The
validity of the ILAPF algorithm is evaluated by illustrative simulations, and the result shows that ILAPF is more
accurate and faster than a recently published state-of-the-art robust particle filter. It also shows that the incremental
learning property of the ILAPF algorithm provides an efficient way to implement transfer learning among related
state filtering tasks.

Problem
As we know, for conventional particle filtering (PF) methods, a major degradation in performance
will happen when a significant mismatch between the leveraged model and the real mechanism that
governs the systems evolution exists. A popular strategy to handle such issue of model mismatch is
to employ a set of candidate models, instead of a single model, to take account of model uncertainty.
To this end, a number of multiple-model strategies (MMS) based PF algorithms have been proposed
in the literature. To implement MMS, human effort is required to specify a set of candidate mod-
els beforehand. The question is: is it possible to learn a single model online, instead of specifying
multiple models beforehand, to handle the issue of model mismatch in PF? Here we focus on the
problem of nonlinear state filtering in presence of outliers, which suffers from the aforementioned
model mismatch issue.

Model
Consider a state space model as follows

xk = f (xk−1) + uk (1)
yk = h(xk) + nk. (2)

Now introduce a variable o ∈ {0, 1} to take account of the uncertainty in the measurement model.
ok = 1(0) denotes the event that yk is (is not) an outlier. If ok = 0, assume that the measurement noise
nk is Gaussian distributed by default, namely nk ∼ N (0, R), where R is a priori known. If ok = 1,
assume that nk is generated from an unknown uniform distribution U(lb, ub), where lb and ub denote
the lower and upper bounds of U , respectively. The likelihood function can now be represented as
follows

p(yk|xk) =
{
p(yk|xk, ok = 1), if ok = 1
p(yk|xk, ok = 0), if ok = 0

(3)

where

p(yk|xk, ok = 1) =

{
1/Vlb,ub, if ek ∈ [lb, ub]
0, otherwise

(4)

p(yk|xk, ok = 0) = N (ek|0, R) , (5)

where ek = yk − h(xk) and Vlb,ub denotes the volume of the space bounded by lb and ub.

Outlier range estimation (ORE) procedure
Assume that the whole population of the outliers has a definite value range specified by a lower and
upper bounds lb and ub. We can estimate lb and ub accurately provided that we have enough outlier
data points at hand. But in practical tasks, usually, only a sparse set of outliers can be collected in a
sequential way. The question under consideration here is: how to estimate lb and ub accurately using
a limited number of outliers that have been found? To fit the sequential structure of the state filtering
problem, we also expect that the estimation procedure can be performed in a sequential way.

The ORE method is proposed to address the above problem. It only has one free parameter I , which
can be interpreted as a measure of uncertainty. Consider outliers sequentially. We make an incre-
mental update to the estimation of lb and ub, once a new outlier arrives. Assume that the current
estimations of lb and ub are l̂b and ûb, respectively, and the number of outliers that have been found
is n. When the (n + 1)th outlier, denoted as zn+1, arrives, the ORE procedure updates l̂b and ûb as
follows

l̂b = min{l̂b, zn+1} − I/(n + 1), (6)
ûb = max{ûb, zn+1} + I/(n + 1). (7)

Convergence of the ORE procedure is demonstrated empirically by simulations. See Figure 1 as
follows.

Figure 1: The simulation result of using the ORE procedure to sequentially estimate the range of the outliers.

The ILAPF Algorithm
Starting from {xik−1, ω

i
k−1}

N
i=1, l̂b and ûb and the number of outliers that have been found n, the

operations in one iteration of the ILAPF algorithm corresponding to time step k are shown as follows.

• Sampling step. Sample x̂ik from the state transition prior by setting x̂ik = f (xik−1), i = 1, . . . , N ;

•Weighting step. The same as in traditional PFs;

•ORE step. If π(ok = 1) > 0.5, declare yk to be an outlier, let n = n+ 1 and update l̂b and ûb using
Eqns. (6) and (7), respectively. Note that π(ok = 1) is an output of the above weighting step.

• Resampling step. Sample xik ∼
∑N
j=1 ω

j
kδx̂jk

, set ωik = 1/N , i = 1, . . . , N . δx denotes the Dirac-
delta function located at x.

Performance Evaluation
See the simulation setting in the paper. The filtering result is shown as follows

Figure 2: Filtering result of ILAPF and HMM-RPF.

Figure 3: The left panel shows the ILAPF yielded posterior probabilities of the outlier hypothesis (corresponding to
ok = 1) and the non-outlier hypothesis (corresponding to ok = 0). The right panel shows the HMM-RPF yielded posterior
probabilities of the candidate models it employs and v denotes the degree of freedom of a Student’s t model.

Table 1: Execution time (in seconds), Mean and variance of the MSE calculated over 30 independent runs of each
algorithm.

Algorithm Time MSE
mean var

ILAPF 3.998 0.365 0.007
HMM-RPF 5.509 0.582 0.109

Figure 4: The estimated lower and upper bounds of the outliers’ value range over 4 consecutive state filtering tasks

Table 2: Mean and variance of the MSE calculated over 30 independent runs of ILAPF for 4 consecutive tasks.
Task 1 Task 2 Task 3 Task 4

Mean of MSE 0.365 0.360 0.333 0.272
Variance of MSE 0.007 0.005 0.004 0.003

Conclusions
MMS is a powerful solution to address nonlinear state filtering problems in presence of model uncer-
tainty. The common practice to implement MMS is to specify a set of candidate models beforehand.
In this paper, we proposed a novel way to implement MMS in the context of nonlinear state filter-
ing in presence of outliers. Instead of specifying a set of candidate models beforehand, we select
to learn a model to approximate the distribution of the outliers in a sequential way. The resulting
algorithm, ILAPF, is shown to be more accurate and faster than its competitor algorithm HMM-RPF.
Through simulations, we also show that the ILAPF algorithm makes transfer learning among related
state filtering tasks possible.


