3-D CNN MODELS FOR FAR-FIELD MULTI-CHANNEL ASR
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Fig. 1. Portion of meeting speech and corresponding spectrogram.

Experiments and Results

Reverb Challenge LVCSR task

For the single speaker far-field experiments, we use the REVERB challenge
LVCSR task with first three microphones.

Summary

In this paper, we have proposed a three dimensional neural network consisting
of convolutional layers that receives input from time-frequency-channel dimen-

sions of the input. The CNN3D model improves the beamforming methods for
multi-channel ASR.
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e Beamforming - designing a spatial filter to perform a delay and sum operation

[1]

e Swietojanski et al [4] proposed the use of features from each channel speech
directly as input.

e Training of neural networks on the raw signals optimized for the discriminative
cost function of the ASR][3].

AMI Single Distant Microphone ASR

The performance of AMI-SDM experiments, shown below, 1s significantly 1m-
proved using a TDNN acoustic model over the HMM-GMM system. The se-
quence cost function further improves the WER. All further experiments use the
sequence training cost function.
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