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Summary
For the task of speech feature denoising, local learning
objectives are agnostic to phonetic structures helpful for
speech recognition. We propose to add a global criterion to
ensure denoised speech is useful for downstream tasks like
ASR. This global criterion (mimic loss) is combined with
the traditional local criterion to train the spectral mapper
to produce denoised speech. This feature denoiser is in-
dependent of any particular acoustic model, and could be
used as a pre-processor for any ASR system. This modu-
larity is the strength of mimic loss.

Spectral Mapper

•After applying Short Term Fourier Transform (STFT)
on noisy signal x, each spectral component xkm is aug-
mented with deltas, double deltas and ten frames of con-
text (designated x̃km = [xkm±5]).
•We define ym to be the clean spectral slice at time m.
•We then use 2 layers of 2048 ReLU neurons to learn a

mapping f (·) from noisy spectral slices x̃m to clean spec-
tral features ym using an MSE loss function, which we
call fidelity loss.

LFidelity(x̃m, ym) =
1

K

K∑
k=1

(ykm − f (x̃m)k)2

Spectral Classifier

•The spectral classifier is 6 layers of 1024 ReLU neurons,
trained to classify a stacked clean spectral pattern ỹm as
one of 1999 senone classes.
•We train the classifier using a cross entropy criterion.

Once the classifier is trained, we freeze the weights.

Mimic Loss

•We can define the mimic loss as the mean square differ-
ence between two D-dimensional representations gen-
erated by the spectral classifier g(·), one when evaluated
on clean speech ym, and one when evaluated on its paired
denoised speech f (x̃m)

•We experimented with two different representations for
g(·): the posterior output of the senones after softmax
normalization (post-softmax) and the layer outputs prior
to the softmax normalization (pre-softmax).

LMimic(˜̃xm, ỹm) =
1

D

D∑
d=1

(g(ỹm)
d − g(f̃ (x̃m))d)2

Joint Loss

•While training the spectral mapper, we found that mimic
loss alone was not enough for the model to converge.

•We speculate that the task of predicting senones is too
different from the task of predicting clean speech for the
error signal to drive the output of the spectral mapper to
actually look like speech features.

•Combining the fidelity and mimic losses into a joint loss
allows the mapper to better imitate the behavior of the
classifier under clean speech while keeping the denoised
speech closer to clean speech.

•However, our approach should not be confused with joint
training because our acoustic model (after pre-training)
is frozen and only the spectral mapper is updated.

LJoint = LFidelity + αLMimic
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Experiment and Results

•We evaluate the effectiveness of our proposed method on
Track 2 of the CHiME-2 challenge by feeding denoised
features to an off-the-shelf Kaldi recipe.

Spectral input to Kaldi WER

Noisy features 17.3
Features denoised via fidelity loss 16.5
Features denoised via joint loss

w/ post-softmax mimic loss 15.7
w/ pre-softmax mimic loss 14.7

Experimental results on the CHiME2 test set

•Ongoing work suggests that a cross-entropy mimic loss
on post-softmax targets performs similarly to MSE
mimic loss on pre-softmax targets.

• Joint loss training diverges when the noisy speech rec-
ognizer is trained using hard targets rather than the soft
targets of mimic loss which proves that this model bene-
fits from learning to mimic the behavior of clean speech.

•For context, we show the performance of our system
relative to other published results on this dataset. The
better-performing models in this list use noise-robust
features [1, 2, 3] as well as joint training of speech en-
hancement module and acoustic model [1, 3, 4] and more
sophisticated models (like RNNs and CNNs) [2, 4].

Study WER

Wang et.al [1] 10.6
Weninger et.al [2] 13.8

proposed approach 14.7

Narayanan-Wang [3] 15.4
Chen et. al [4] 16.0

Performance comparison of proposed approach with other
studies on the CHiME2 test set.

Spectrogram Comparison
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(a) Noisy utterance

0.8 1.0 1.2 1.4 1.6
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y 
(H

z)

(b) Clean utterance

Features for utterance 440c020f7 which begins with “The
average rate . . . ”
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(c) Fidelity loss
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(d) Joint loss

Enhanced features for utterance 440c020f7. The Kaldi
recipe incorrectly predicts the fidelity-loss-denoised fea-
tures to have said “Disaster trade . . . ”, but makes the cor-
rect prediction for the joint-loss-denoised features.
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