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Graph signal processing

I Emergence of network science and big data

I Networks and graphs: structures that encode pairwise relationships

I Our interest, not in network itself, but in data associated with nodes

) The object of study is a graph signal

I Graph SP: need to extend classical SP results to graph signals

) Modify existing algorithms, gain intuition on concepts preserved/lost

Graph G = (V, E ,W )
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Reconstruction of bandlimited graph signals

I Many relevant GSP problems: filter design, sampling, blind deconvolution

I Our focus in this paper: reconstruction of bandlimited graph signals

I Most related problems:

) Estimate the unknown signal y by observing a subset of nodes

I Our problem:

) Reconstruct the known signal y by acting on a subset of nodes

) Injection of a sparse signal followed by a low-pass graph filter

) GRAPH FILTER )

y = Hx

I Not only theoretical merits, also practical relevance

) Graph filters ) percolation of local information

) Distributed nets, opinion formation, biological percolation processes

I Before being more specific: review of graph signals and filters
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Graph signals and the need for graph topology

I (Node) graph signals are mappings x : V ! R
) May be represented as a vector x 2 RN (with |V| = N)

) DSP can be seen as a particular case of GSP ) directed cycle graph

I Graph G = (V, E ,W ) is endowed with a graph-shift operator S

) Can be represented as a matrix S 2 RN⇥N satisfying:

) Sij = 0 for i 6= j and (i , j) 62 E (captures local structure in G)

) S can take nonzero values in the edges of G or in its diagonal

I Examples: Adjacency A, Degree D and Laplacian L
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Locality of S and frequency interpretation

I S is a local linear operator, i.e., if y = Sx

) yi =
P

j Sijxj =
P

j2N+

i
Sijxj ) only to 1-hop info

) if z = S2x ) z = Sy ) 2-hop info

I S (spectrum) useful to analyze x, here diagonalizable shifts S = V⇤V�1

) V = [v
1

v
2

. . . vN ] eigenvectors; ⇤ eigenvalues; if normal, V�1 = VH

I Leverage S to define GFT and iGFT

x̃ = V�1x x = Vx̃

) Bandlimited signals: x̃ sparse; particular cases: DFT, PCA

I Key message: the two basic elements of GSP are x and S
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Definition of a linear (shift-invariant) graph filter

I A graph filter H : RN ! RN is a map between graph signals

Focus on linear filters
) represent by a N⇥N matrix

I Filter H is a polynomial on S with coe�cients hl and degree L

H := h
0

S0 + h
1

S1 + h
2

S2 + . . . =
LX

l=0

hlS
l

I A graph filter represents a linear transformation that

) Accounts for local structure of the graph

) Can be implemented distributedly in L steps

) Only requires information in the L-neighborhood
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Frequency response of a graph filter

I Using S = V⇤V�1, we may write H =
PL

l=0

hlSl = V
⇣PL

l=0

hl⇤l
⌘
V�1

I Since ⇤l are diagonal, the GFT-iGT can be used to write y = Hx as

ỹ = diag(h̃)x̃

) Output at frequency k depends only on input at frequency k

) h̃ is the frequency response of the filter H

I Clearly h̃k =
PL

l=0

hl�
l
k , hence one can obtain h̃ as h̃ =  h, where

 :=

0

B@

1 �
1

. . . �L
1

.

.

.

.

.

.

.

.

.

1 �N . . . �L
N

1

CA

) Since  is Vandermonde, invertible if �k 6=�k0 ) h =  �1h̃

) To be leveraged when designing (low-pass) graph filters

I Note that GFT for signals V�1 and filters  is not the same
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Revisiting our motivation

I We want to reconstruct a (K -bandlimited) graph signal y

I Most existing problems

) Estimate the unknown signal y by observing a subset of nodes

I Our problem

) Reconstruct the known signal y by acting on a subset of nodes

I Approach: design a sparse input that is percolated by a graph filter

) We act on a node by injecting signal values

) Distributed implementation

I Examples include the reconstruction of:

) Global opinion in a social net by influencing a few people

) Brain state by exciting a few brain regions
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Operation and problem statement

Operation: The reconstruction scheme proceeds in two phases

1. Seeding phase

I Output is a sparse signal x

) In its simplest form we can act directly on {xi}i2P

) Single seeding node, injects scalars {s t}t2P di↵used by S to form x

2. Filtering phase

I Use x as input

I Apply a low-pass graph filter H with freq. response h̃ = [h̃T
K , 0]T

I Obtain the output signal z := Hx

Problem statement: How to design x and H such that z = y?

I Resembles (uniform) time interpolation

⇤ =
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Illustrating percolation

I We will focus on Single Node - Multiple Time seeding
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Single Node - Multiple Time (SN-MT) seeding

I A single node (say 1) injects P scalar seeding signals s t , one per time t

I Collect those P signals in sP := [sP�1, . . . , s0]T and define st = [sP ]te1

I Goal of y = Hx, rewritten in the frequency domain

ỹ=V�1Hx = V�1Vdiag( h)V�1x = diag
�
 h

�
x̃

) Bilinear problem in x̃ and h

I Split the system of equations in two ) EK first K canonical vectors

ỹK = ET
K diag( h) x̃, (1)

0N�K = ĒT
K diag( h) x̃. (2)

I Equation (2) holds for every K -bandlimited signal y

) Design h to solve (2) and x̃ to solve (1)

I If degree of H no smaller than distinct eigenvalues in {�i}Ni=K+1

) h⇤ solving (2) can always be found

I What is the relation between x̃ and the injected values sP?
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Single Node - Multiple Time (SN-MT) seeding: Recovery

I Each seed percolated using S ) output of the seeding phase is

x =
PP

t=1

St�1st =
PP

t=1

[sP ]tSt�1e
1

I Same form of a filter with input e
1

and coe�cients sP

x̃ =diag( sP)ẽ1= diag(ẽ
1

) sP

I U
1

# zeros in {[ẽ
1

]k}Kk=1

and D
1

# of repeated values in {�k}Kk=1

Perfect reconstruction in SN-MT seeding

Perfect reconstruction of y is guaranteed via SN-MT seeding if:
i) �k

1

6= �k
2

for all (�k
1

,�k
2

) such that k
1

 K and k
2

> K ,
ii) U

1

= 0 and D
1

= 0.

I Seeding s⇤P =  �1diag�1(ẽ
1

)diag�1(h̃⇤
K )ỹK

) Cond. i) ensures that h⇤ does not eliminate any active frequency

) U
1

= 0: seeding node acts on every active frequency

) D
1

= 0: every active frequency is distinguishable from each other
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Discussion and extensions

I SN-MT recovery depends on ⇤ and rows of V�1 being non-zero

) Easy to look for a good seeding node: as in sampling [Marques15]

I MN-ST recovery depends on rank of submatrix of V�1 (Not shown here)

) No clear way to check a priori: as in sampling [Chen15]

I Extensions to Multiple Node -Multiple Time seeding developed too

I Approximate (imperfect) reconstruction settings

) Insu�cient amount of seeding values or filter degree

) Noisy seeding value injections

I The set of seeding nodes has a significant impact on robustness

) Optimal design to minimize mean or worst-case error
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Illustrating perfect recovery of a bandlimited graph signal

I Erdős-Rényi graph with p = 0.2 and N = 10, single seeding node
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Bandwidth: K = 3
) Seeding phase of length 3

I Evolution of the signal (space and frequency) for every shift
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I Perfect recovery is achieved after seeding and filtering
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Applications

Opinion formation

I Induce a desired opinion profile

) Zachary’s Karate club graph

I Study robustness of di↵erent seeding strategies

) Insu�cient seeding nodes

I Better to convince several people once (MN-ST)

) than same person multiple times (SN-MT)
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Brain state induction

I Take brain to desired state by exciting a few (or just one) regions
I Study robustness of di↵erent seeding sets

) Noise in the signal injection
I Corroborate neurophysiological meaning of the findings
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Conclusions and take-home messages

I Specific contribution in this paper

) Reconstruction of bandlimited graph signals from single node inputs

) Successive inputs followed by a graph filter

) Conditions for recovery

) Extensions to multiple nodes injecting multiple values

) GRAPH FILTER )

I From a more general point of view

) Decoupling betw. estimating unobserved values and low-pass filtering

) Graph filters can be viewed as linear network operators

) Strong relation between GSP and di↵usion/percolation processes
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