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Graph signal processing

> Emergence of network science and big data

v

Networks and graphs: structures that encode pairwise relationships
» Our interest, not in network itself, but in data associated with nodes

= The object of study is a graph signal

\4

Graph SP: need to extend classical SP results to graph signals

= Modify existing algorithms, gain intuition on concepts preserved/lost

X1 0.6

XV 0.7
Graph G = (V,&, W)
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Reconstruction of bandlimited graph signals

» Many relevant GSP problems: filter design, sampling, blind deconvolution

» Our focus in this paper: reconstruction of bandlimited graph signals

v

Most related problems:

= Estimate the unknown signal y by observing a subset of nodes

v

Our problem:
= Reconstruct the known signal y by acting on a subset of nodes

= Injection of a sparse signal followed by a low-pass graph filter
= GRAPH FILTER =

y = Hx

> Not only theoretical merits, also practical relevance
= Graph filters = percolation of local information

= Distributed nets, opinion formation, biological percolation processes

» Before being more specific: review of graph signals and filters
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Graph signals and the need for graph topology

> (Node) graph signals are mappings x : V — R
= May be represented as a vector x € R" (with |V| = N)
= DSP can be seen as a particular case of GSP = directed cycle graph

» Graph G = (V,&, W) is endowed with a graph-shift operator S
= Can be represented as a matrix S € RV*V satisfying:
= S;j =0 fori#jand (i,j) & E (captures local structure in G)
= S can take nonzero values in the edges of G or in its diagonal

o o Sy S 00 S5 0
o Sy Sw Sus 0 Sa; 0
0 Sa3 Szz Sz O 0

(2) () S=| 0 0 S Su Su S
' Ss1 Ss2 0 Ssa Ss5 0
o 0 0 0 Se 0 Se

» Examples: Adjacency A, Degree D and Laplacian L
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Locality of S and frequency interpretation

\4

S is a local linear operator, i.e., if y = Sx
= ¥i =22 SiXj = X jenr+ Sixj = only to 1-hop info

= if z=8%x = z =Sy = 2-hop info

v

S (spectrum) useful to analyze x, here diagonalizable shifts S = VAV ™!

= V = [v1vz...vp] eigenvectors; A eigenvalues; if normal, v i=vH

v

Leverage S to define GFT and iGFT

%=V !x x = V&

= Bandlimited signals: X sparse; particular cases: DFT, PCA

> Key message: the two basic elements of GSP are x and S
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Definition of a linear (shift-invariant) graph filter

Focus on linear filters X o0, y.,. ®e.
= represent by a N x N matrix . . . .

» Filter H is a polynomial on S with coefficients h; and degree L

L
H:= hS® + S + hS*+... = Zh,S’
1=0

> A graph filter represents a linear transformation that
= Accounts for local structure of the graph
= Can be implemented distributedly in L steps

= Only requires information in the L-neighborhood
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Frequency response of a graph filter

> Using S = VAV™", we may write H = 1o hiS' = V (S ') V!

» Since N are diagonal, the GFT-iGT can be used to write y = Hx as
§ = diag(h)x

= OQutput at frequency k depends only on input at frequency k
= his the frequency response of the filter H

> Clearly he = Z/L:o hi)\k, hence one can obtain h as h = Wh, where

L Y

1 ,\'N /\'k,
= Since W is Vandermonde, invertible if \y# A\ = h = wlh

= To be leveraged when designing (low-pass) graph filters

» Note that GFT for signals V™! and filters W is not the same
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Revisiting our motivation

» We want to reconstruct a (K-bandlimited) graph signal y

» Most existing problems

= Estimate the unknown signal y by observing a subset of nodes

v

Our problem

= Reconstruct the known signal y by acting on a subset of nodes

» Approach: design a sparse input that is percolated by a graph filter
= We act on a node by injecting signal values

= Distributed implementation

v

Examples include the reconstruction of:
= Global opinion in a social net by influencing a few people

= Brain state by exciting a few brain regions
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Operation and problem statement

Operation: The reconstruction scheme proceeds in two phases

1. Seeding phase

» Output is a sparse signal x
= In its simplest form we can act directly on {x;}icp
= Single seeding node, injects scalars {s'}+cp diffused by S to form x
2. Filtering phase
» Use x as input
> Apply a low-pass graph filter H with freq. response h= [ﬁ;, O]T
» Obtain the output signal z := Hx

Problem statement: How to design x and H such that z =y?

» Resembles (uniform) time interpolation
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[llustrating percolation

Targetsignal
(to be interporlated)

Low-pass filter & % Low-pass filter

Multiple-Node Single-Nofje
Single-Time Multiple-Time

> We will focus on Single Node - Multiple Time seeding

Alejandro Ribeiro
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Single Node - Multiple Time (SN-MT) seeding

» A single node (say 1) injects P scalar seeding signals s*, one per time t

v

Collect those P signals in sp := [s"71,...,s°]" and define s’ = [sp].e1

v

Goal of y = Hx, rewritten in the frequency domain
§=V 'Hx = V™ 'Vdiag(Wh)V'x = diag(Wh)x

= Bilinear problem in X and h

> Split the system of equations in two = Ek first K canonical vectors
¥k = Ex diag(Wh) %, (1)
Oy x = Ef diag(Wh) %. (2)

v

Equation (2) holds for every K-bandlimited signal y
= Design h to solve (2) and X to solve (1)

v

If degree of H no smaller than distinct eigenvalues in {\;}¥ 4

= h” solving (2) can always be found

» What is the relation between X and the injected values sp?
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Single Node - Multiple Time (SN-MT) seeding: Recovery

» Each seed percolated using S = output of the seeding phase is
x =31, 8 s =3 [s0]:S  te
» Same form of a filter with input e; and coefficients sp

% =diag(Wsp)é; = diag(é:)Wsp

> # zeros in {[&1]x}5_; and D; # of repeated values in {\(}5_;

Perfect reconstruction in SN-MT seeding

Perfect reconstruction of y is guaranteed via SN-MT seeding if:
i) Mg # Ak, for all (Mg, A,) such that k1 < K and kx > K,
i) and D; = 0.

> Seeding sp = W tdiag (& )diag " (hj)¥k
= Cond. i) ensures that h* does not eliminate any active frequency
= : seeding node acts on every active frequency

= D; = 0: every active frequency is distinguishable from each other
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Discussion and extensions

v

SN-MT recovery depends on A and rows of V™! being non-zero
= Easy to look for a good seeding node: as in sampling [Marques15]
» MN-ST recovery depends on rank of submatrix of V1

= No clear way to check a priori: as in sampling [Chen15]

» Extensions to Multiple Node -Multiple Time seeding developed too

v

Approximate (imperfect) reconstruction settings
= Insufficient amount of seeding values or filter degree

= Noisy seeding value injections

v

The set of seeding nodes has a significant impact on robustness

= Optimal design to minimize mean or worst-case error
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[llustrating perfect recovery of a bandlimited graph signal

> Erdés-Rényi graph with p = 0.2 and N = 10, single seeding node

Alejandro Ribeiro
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Bandwidth: K =3
= Seeding phase of length 3

Evolution of the signal (space and frequency) for every shift

1045 1.01 1.68 221 257 331

053 1.08 1.77 213

Node Index

063 1.57 2.72
051 1.23 238 3.27

0 1 2 3 4 5 6 7
Time

> Perfect recovery is achieved after seeding and filtering

9

1.60 4.74

0.57

1.10 2.76 5.22 6.86 6.35

Frequency Index

0.51 0.99 1.19 0.68
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Applications

Opinion formation

» Induce a desired opinion profile

= Zachary's Karate club graph Tour
» Study robustness of different seeding strategies D I *

= Insufficient seeding nodes § i
> Better to convince several people once (MN-ST) *

25 5 35
‘Seeding Values

= than same person multiple times (SN-MT)
Brain state induction
> Take brain to desired state by exciting a few (or just one) regions
» Study robustness of different seeding sets
= Noise in the signal injection
» Corroborate neurophysiological meaning of the findings

Frequency
H

)
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Brain Regions
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Conclusions and take-home messages

» Specific contribution in this paper
= Reconstruction of bandlimited graph signals from single node inputs
= Successive inputs followed by a graph filter
= Conditions for recovery

= Extensions to multiple nodes injecting multiple values

= GRAPH FILTER =

» From a more general point of view
= Decoupling betw. estimating unobserved values and low-pass filtering
= Graph filters can be viewed as linear network operators

= Strong relation between GSP and diffusion/percolation processes
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