CLUSTERING OF DATA WITH MISSING ENTRIES
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ABSTRACT e PROPOSED SCHEME \\
» We propose a method to perform clustering of data with missing entries. Ly penalty based optimization problem Effect of different penalties on clustering
» The technique is able to recover the original clusters. KM
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When does data have missing entries? In most practical situations!

Solving this problem is computationally intensive
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> Each user rates a small » Many respondents leave » All information is not . . 2 5 »
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Solve using majorize-minimize formulation
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\ Our aim: Design algorithm that finds the same clusters for both datasets/ \ [ J ] P
THEORETICAL GUARANTEES N
Definitions and Assumptions Clustering using [ penalty Computing probability of success
‘ ‘ Features not » P: Dimensionality
> K clusters : E@ CO:CS”tfated i concentrated Let Kk = # > € : Intra-cluster separation > Probability of 2 points from different clusters sharing a centre < So
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» Cluster Separation: > § » Cluster size: < € > Few missing entries : Well separated clusters o Z{mj}es Bo H:r (mJ)
> Feature concentration: Coherence of difference between Result with no missing entries: where & is the set of all sets with < J non-zero positive integers with sum N
points in different clusters is i If & < 1, correct clustering is guaranteed -

RESULTS

. . Clustering of simulated data Clustering of wine data
Study of theoretical guarantees Theoretical guarantees vs experimental results
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. o ) » 2 simulated datasets: 3 clusters, 200 points in each . )
Probability of correct clustering increases with: Comparison on a simulated dataset with > Successful clustering for 70% missing entries » 3classes of Wme,' 40 samples in eta\ch .
» More points: M 1~ » More measured features: Po T » Kk | 2 clusters using 20 experimental trials in data-1 and 60% missing entries in data-2 > Successful clustering for 50% missing entries
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