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Model-based Noise Compensation
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(g)VTS is a model-based technique for noise compensation.



(g)VTS Pseudocode

0. GMM of CLEAN
---------------------------------------
– For each utterance ...
     1. Compute the environment model
     2. Apply the (Gen)Log
     3. Factor out CLEAN part and compute the distortion function
     4. Estimate Noise

4.1. Additive
4.2. Channel

     5. Linearise using Taylor series
5.1. Points       → means of Gaussians
5.2. Jacobians → partial derivatives

     6. Estimate CLEAN features using MMSE 
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Advantages of gVTS
● gVTS → replacing Log with GenLog in VTS
● One extra degree of freedom (α)

– A non-linear transform with statistical effect [App. 1]
● Can improve linearity, homoschodasticity and Gaussianty

– Compensation is carried out in a space with a 
higher signal-to-noise ratio (SNR) [App. 2]

● Further robustness

– The optimal value for α  →  0.05 – 0.1 [App. 3]
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Extension of the gVTS
To Group Delay (GD) 

Domain



Environment Model

convex 
combination
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Periodogram domain

Group delay domain

|H[k]|2X[k] +

W[k]

Y[k]



Challenges

1) Larger number of variables
– 4 in periodogram domain vs 8 in GD domain

● For each variable a statistical model should be estimated
● Noise compensation would be more complicated

2) Dynamic range compression using log and/or 
power transformation is problematic
– Group delay can be negative

4 variables

8 variables 6/15



Larger Number of Variables

● How to reduce number of variables?
– Variables representing similar information and are 

added/multiplied may be encapsulated into one variable, e.g. 
group delay and power spectrum

– Variables tends to zero in expected sense, may be removed, 
e.g. clean signal and noise cross-correlation

Group delay-power
Product spectrum (PS)

#variables: 6
Still larger than periodogram 
domain which is 4! 7/15



Larger Number of Variables ...

                   Extra undesired term!
 

– Without it the environment model resembles 
the periodogram domain
 

– If                  tends to zero, (g)VTS equations 
in periodogram domain can be used
 

– Obviously |X|2 and |H|2 are not zero!
 

– What about      ? 8/15

Periodogram
domain

Product 
Spectrum
domain



Phase and Group Delay of Channel

● Test sets A and C of Aurora-4 database may be used 
as stereo data to estimate channel Fourier transform

t: Frame index

Channel 
phase 

spectrum

Channel 
group 
delay

Filterbank
Energies 
(FBE) – 

Periodogram 

(FBE) – 
group delay

Red curve: average over 330 utterances
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Channel Phase Spectrum and 
Group Delay

● In the expected sense, the group delay of the 
channel tends to zero, as a result ...
– Undesired term can be removed  
– Equation would be similar to periodogram domain

0
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Dynamic Ranges Compression

● Dynamic range of product spectrum is comparable to 
power spectrum
– Needs compression before statistical modelling

● (Gen)Log cannot be applied directly because group 
delay can be negative

● Possible solutions:

Absolute 
value

Add a 
constant

 Best solution

Flooring
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Use sign 
function 
and abs



gVTS in the GD-power Product 
Spectrum Domain

1. Statistical models

2. Environment model
 (after applying GenLog)

3. Taylor series
(linearisation)
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Distortion function →  



gVTS in the GD-power Product 
Spectrum Domain

4. Compute the Jacobians 
(partial derivatives)

5. Compute noisy 
observations (QY) statistics 
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gVTS in the GD-power Product 
Spectrum Domain

6. MMSE estimate
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Experimental Setup
● Database: Aurora-4
● Training sets: (each set: 7138 utterances, ~ 14 hours)

– Clean-SI-84 → only clean data → CL
– Noisy-SI-84 → clean and additive noise, SNR: 15 dB → M1
– Multi-SI-84  → clean+additive+channel, SNR: 15 dB → M2

● Test set: Eval-92 → 330 utterances, ~ 40 minutes
– 14 noise types artificially added using FaNT tool → 4620 utterances, grouped into

● Test set A: Clean
● Test set B: Additive noise, SNR: 10 dB 

– 6 noise types: Airport, Babble, Car, Restaurant, Street, Train Station

● Test set C: Channel distortion
● Test set D: Additive and Channel noise, SNR: 10 dB (6 additive noise types+channel distortion)

● Channel estimation → Method proposed in our earlier publication [App. 4]
● GMM/HMM → HTK → state-clustered triphones → 16 Gaussians, 4 iterations
● DNN (TNET) → 4 hidden layers (1300 nodes each)→bottleneck (26 nodes)→ 

output-layer [App. 5]
●  Language model → bigram (perplexity: 147)

13/15



Relative to M2:

Ave → +4.1%

Experimental Results (WER) 
Aurora4 – GMM/HMM

Relative WER reduction (relative to CL):
A → 7.7%       C → 41.1%   Ave → 34.8%
B → 41.8%     D → 32.1%

Relative to M1:

Ave → +13.8%
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Experimental Results (WER) 
Aurora4 – Bottleneck

Relative WER reduction (relative to CL):
A → 16.4%     C → 40.3%   Ave → 23.5%
B → 18.2%     D → 24.9%

Relative to M1:

Ave → +13.8%

Relative to M2:

Ave → -3.7%

gVTS
DNN

(Bottleneck)
GMM/HMM

Feature
Extraction
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Discussion and Conclusion
● gVTS and channel estimation techniques, proposed in earlier 

publications, successfully extended to product spectrum domain 

● On average, the propose system trained by only clean data 
outperforms the MFCC-based system trained by Multi-style data (M2) 
in conventional GMM/HMM

● Combination of the gVTS and DNN is 

– Super-additive [App. 6] when there is a structural mismatch between 
the test and train conditions, e.g. CL or M1 training conditions

● Allows for building a robust system using DNN even when only 
clean data is available

– sub-additive [App. 6] when all noise types with comparable SNR are 
available during training (M2)

● In this case, discrimination is the main issue, not robustness 
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That's it!
● Thanks for your attention
● Q&A



Appendices
1) Statistical effect of GenLog

2) GenLog can improve the SNR

3) Parameter adjustment in gVTS framework

4) Channel noise estimation
1) Pseudocode

2) Initialisation and iteration effects 

5) DNN Architecture → Bottleneck

6) Super-additivity vs Sub-additivity

App. 0/6
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GenLog can improve the SNR ...

2 4 6 8

1.0

1.1

1.2

1.3

1.4

SN
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SNR 
Boost

Statistical
Distribution

App. 3/6

Easier to be fitted 
by a GMM!



Channel Estimation Pseudocode

  

gVTS1

Estimate
Additive Noise

Model
Adaptation 

Clean
Model

0. Initialise H 

1. Adapt Clean Model with H

2. gVTS for Additive Noise
 
3. Update H

4. If not converged GO TO 1 

Return H

App. 4/6



Channel Estimation --
Initialisation and Iteration effects 

App. 4/6



DNN Architecture → Bottleneck 

– N in input layer (context length): 15
– #nodes in the hidden layers: 1300
– #nodes in the bottleneck layer: 26
– #nodes in the output layer: state-clustered triphones (~2000) App. 5/6



Super-additivity vs Sub-additivity
of a Tandem gVTS-DNN System

gVTS GMM/HMM
Feature

Extraction

WER1

DNN
(Bottleneck)

GMM/HMM
Feature

Extraction

WER2

– Super-additive: WER3  is better than min(WER1,WER2)
– Sub-additive:    WER3  is worse than min(WER1,WER2)

gVTS DNN
(Bottleneck)

GMM/HMMFeature
Extraction

WER3

App. 6/6
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