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Outline
– In this talk, we will cover the following:

• Motivation
• Review of Kernel Methods
• Quaternions and GHR Calculus

– Quaternion Adaptive Filtering

• Renyi’s Entropy and Parzen window
• Quaternions and Kernel Filtering using Minimum 

Entropy cost function
– Kernel-based Estimation with Quaternions minimum entropy
– Derivation of Quaternion KMEE 

• Simulations
• Conclusions
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Motivation
– Develop Adaptive filter for nonlinear system for Quaternion 

data, based on information theoretic learning cost function.
• Use Kernel method for nonlinearity and computational complexity

• Use Information Theoretic Learning (ITL) cost function such as 
Error Entropy. 

– Entropy is the average information of a random variable.

• Use Minimum Error Entropy Cost Function:
– By minimizing error entropy, the amount of information lost to the error signal 

is minimized. 

• Use GHR calculus to calculate the Gradient of cost function in 
Quaternion domain.
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Kernel-Based Algorithms

– Kernel methods allow for recasting a nonlinear optimization problem 
to a space where linear optimization can be used.

– Kernel-based methods provide a powerful approach for performing 
nonlinear adaptive filtering.

– In nonlinear system filtering using kernel methods can greatly reduce 
the complexity of equalization or estimation.



Slide 5

Signal Processing Research Lab. (SPRL)

Kernel-Based Algorithms

– The kernel transform the input  to higher-dimension space, referred 
to as the feature space using feature map.

• Example:
For input x=[x1 x2], a possible feature space mapping is:

Φ(x) = [ x1 x2 x1
2 x1x2 x2

2 ]    (for order 2 nonlinearities)

where Φ(.) is the transform map or feature map.

• The transform shown allows adaptive learning of a nonlinear channel
of order 2 to be performed linearly in feature space.
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Kernel-Based Algorithms
– Kernel functions

• compute the inner product of two input vectors in feature space, and reduce the computation 
complexity :

κ(x, y) =  <Φ(x), Φ(y)>S

• Example of Kernel: Gaussian kernel:

κ(x, y) =  exp(-σ|x - y|2),         where σ adjusts mapping

• This kernel represents the inner product for an infinite-dimensional space. Thus, the Gaussian 
kernel allows for  learning in an infinite-dimension space with finite complexity.

• Use of infinite-dimension spaces allow for universal function approximation (i.e. learning 
nonlinearities of any order).

– Kernel trick

• If an algorithm can be formed with inner products or equivalent kernel evaluation using kernel 
functions there is no need to perform computation in higher dimension, this is referred to as the 
‘kernel trick’.
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Quaternions
– The use of quaternion-valued data has been drawing recent interest in 

various areas of statistical signal processing [1]:

• Vector sensors such as motion body sensors, seismic, wind 
modeling  

• Adaptive filters

• Machine learning

– The benefit for quaternion-valued processing in particular includes 
performing data transformations in 3 or 4-dimensional space 
conveniently compared to vector algebra. 

[1] C. C. Took and D. P. Mandic, “A quaternion widely linear adaptive filter,” in Trans. Signal Process. 
IEEE,2010, vol. 58, no. 8, pp. 44274431.
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Quaternions
– Quaternions are 4-dimensional data values, composed of a real component 

and  3 orthonormal imaginary components:  i,  j, and  k

– Quaternions are noncommutative in multiplication: 

– Multiplication of quaternions is based on the following properties. For the 
imaginary components:

– An important relation for quaternion data are quaternion involutions. These 
relations are:
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– The HR derivatives are:

– The conjugate (HR* derivatives):

• HR calculus can be difficult in complex optimization problems due to the lack of product and 
chain rules, a consequence of the non-commutativity of quaternion algebra. Generalized HR 
(GHR) derivatives leverages the quaternion rotations in a general orthogonal system, provide 
the left- and right-hand versions of the quaternion derivative of general functions.

HR Derivatives 

[6] Dongpo Xu, Cyrus Jahanchahi, Clive C. Took and Danilo P. Mandic, “Quaternion Derivatives: The GHR Calculus,” in Submitted exclusively to the London Mathematical Society 
doi:10.1112/0000/000000. 2014Paper about Gradients of Quaternion 
[7] Dongpo Xu, Yili Xia, Member, IEEE, and Danilo P. Mandic, “Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms,” in Transactions on Neural 
Networks and Learning Systems. IEEE,2016, VOL. 27, NO. 2, pp. 249 - 261.
[16] M. D. Jiang, Y. Li, andW. Liu , “Properties of a General Quaternion-Valued Gradient Operator and Its Application to Signal Processing,” in Frontiers of Information Technology and 
Electronic Engineering. 2016, vol. 17, issue: 2, pp. 83-95 .
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– The GHR derivatives (Left) :

– The conjugate GHR* derivatives (Left) are:

– While  the right side derivatives are :

– While  the right side derivatives are :

GHR Derivatives 

[6] Dongpo Xu, Cyrus Jahanchahi, Clive C. Took and Danilo P. Mandic, “Quaternion Derivatives: The GHR Calculus,” in Submitted exclusively to the London Mathematical Society 
doi:10.1112/0000/000000. 2014Paper about Gradients of Quaternion 
[7] Dongpo Xu, Yili Xia, Member, IEEE, and Danilo P. Mandic, “Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms,” in Transactions on Neural 
Networks and Learning Systems. IEEE,2016, VOL. 27, NO. 2, pp. 249 - 261.
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– Product rule:

– Chain rule:

– Rotation rule:

– Conjugate rule: 

GHR Derivatives Properties
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– Gaussian-based kernel for quaternion data may be expressed as:

– where X and Y are quaternion numbers in H in form of       

– and 

– More details of the quaternion kernel is provided in [15].

Gaussian-based kernel for 
quaternion data

[15] Thomas K. Paul and Tokunbo Ogunfunmi , “A Kernel Adaptive Algorithm for Quaternion-Valued Inputs,” in 
Transactions on Neural Networks and Learning Systems.IEEE, 2015,Volume: 26, Issue: 10,pp. 2422 - 2439
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Information Theoretic 
Learning Cost Functions

– MCC (maximum correntropy criterion)
• It is a local criterion because it only cares about the local part of the error 

PDF falling within the kernel bandwidth. When the error modes are far 
from the origin, they fall outside the kernel bandwidth, and the learning 
stalls.

• Lower computational complexity

– MEE (minimum error entropy )
• It weights the error PDF by itself, the error modes are easily detected with 

the advantage of data efficiency and more effective training. 
• Higher computational complexity

[17] Weifeng Liu, P. P. Pokharel, J. C. Principe , “Error Entropy, Correntropy and M-Estimation,” in 2006 16th IEEE Signal 
Processing Society Workshop on Machine Learning for Signal Processing. IEEE, 2006,pp. 179 - 184 .
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Minimum Error Entropy
– Why use Minimum Error Entropy:

• Entropy is a scalar quantity that provides a measure for the average 
information contained in a given probability distribution function.

• By definition, information is a function of the pdf; hence, entropy as an 
optimality criterion extends MSE. [13]

• When the error entropy is minimized the amount of information lost to the 
error signal minimized.

• In order to extract the most information from the data in supervised 
learning, given samples from an input-output mapping, the information 
content of the error signal must be minimized, therefore the error entropy 
over the training data set must be minimized. Then, all moments of the error 
pdf (not only the second moments) are constrained.

[13] Deniz Erdogmus; Jose C. Principe, “An error-entropy minimization algorithm for supervised training of nonlinear 
adaptive systems,” in Transactions on Signal Processing. IEEE, 2002, Volume: 50, Issue: 7, pp. 1780 - 1786. 
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– Why use Renyi’s Entropy 

• Minimizing Renyi's error entropy minimizes the Renyi's divergence between 
the joint pdfs of the input-desired signals and the input-output signals[13].

• Reyni’s entropy definition such as the order-α Renyi’s entropy is defined as :

– Where                            and           distribution function of random variable e

• We can define order-α information potential  Vα :

Renyi’s Entropy 

[13] Deniz Erdogmus; Jose C. Principe, “An error-entropy minimization algorithm for supervised training of nonlinear 
adaptive systems,” in Transactions on Signal Processing. IEEE, 2002, Volume: 50, Issue: 7, pp. 1780 - 1786.
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– Why use Parzen Window

• In practice the entropy function is not accessible since it is a function of the 
pdf of relative random variable e. 

• With α =2 the entropy can be estimated by using some specific method such 
as Parzen window which is a good estimation of the order-2 Renyi’s function. 

• For a set of N statistically independent random samples 

• The Parzen window computes the estimate of the probability distribution 
function as:

– Where 

Parzen Window 
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– The estimation of information potential V(e) using Parzen window is:

– The global solution of maximization of the is the same as global 
solution of with the Parzen window estimation and the global 
solution is achieved when all related errors are constant.

– The maximum value of               is :

Estimation of Information 
Potential  V(e)
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– The Minimizing the error entropy can be done by maximizing the error 
information potential cost function  J (n) in quaternion domain which can 
be defined as :

– Where 

Minimizing the Error Entropy
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Quaternion Minimum Error 
Entropy Algorithm
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– For the quaternion kernel adaptive filter based on minimum entropy 
(QKMEE) with quaternion data, the goal is to minimize the error entropy 
which can be done with maximizing the information potential cost 
function J(n). 

– The filter can be expressed as: 

– Where                                        is the kernel map to a quaternion RKHS 
[15]

Quaternion Minimum Error 
Entropy Algorithm

[15] Thomas K. Paul and Tokunbo Ogunfunmi , “A Kernel Adaptive Algorithm for Quaternion-Valued Inputs,” in 
Transactions on Neural Networks and Learning Systems.IEEE, 2015,Volume: 26, Issue: 10,pp. 2422 - 2439
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– Maximizing the information potential cost function J(n) can be done with 
unconstrained optimization algorithm such as gradient ascent algorithm. 

– Where        is adaptation step size and 

Quaternion Minimum Error 
Entropy Algorithm 
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– The gradient of the cost function J(n) can be calculated using GHR 
calculus based on the following equation: 

Quaternion Minimum Error 
Entropy Algorithm 
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– By setting w0 =0 and replacing exp(g) with its kernel equivalent the filter 
output can be calculated as:

Quaternion Minimum Error 
Entropy Algorithm 
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– By substituting the weight update in the                                                         
and using properties of Quaternion Reproducing Kernel Hilbert Space 
(QRKHS) and the 'kernel trick' to replace the inner product of two vectors 
with quaternion kernel, we can simplify the equation in kernel form as :                                          

Quaternion Minimum Error 
Entropy Algorithm 
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Simulation
– To evaluate convergence of these algorithms, we used a channel 

estimation task based on the Weiner nonlinear model:

– The widely linear portion used was:[15]

– And the nonlinearity was:         Coeff’s:

– Widely linear model was used to  account                                                           
second order statistics in quaternion data. 

Widely Linear    
Filter

Memoryless                                         
Nonlinear fn 

u(n) z(n)
y(n)

(ch. output)

[15] Thomas K. Paul and Tokunbo Ogunfunmi , “A Kernel Adaptive Algorithm for Quaternion-Valued Inputs,” in 
Transactions on Neural Networks and Learning Systems.IEEE, 2015,Volume: 26, Issue: 10,pp. 2422 - 2439 .
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Simulation 
– For the tests, both input u(n) and noise v(n) were formed using impulsive Gaussian 

mixture models to form non-Gaussian signals. A quaternion random variable (RV) 
with components from different real Gaussian distributions was formed. The 
probability distributions used were:

– In simulation non-Gaussian signals were used to show that the Minimum Error 
Entropy criterion generates more concentrated error peaks in error PDF whereas the 
variance (MSE) generates wider error distributions.

[8] Felipe A. Tobar and Danilo P. Mandic, “Quaternion Reproducing Kernel Hilbert Spaces:Existence and Uniqueness 
Conditions,” in Transactions on Information Theory . IEEE,2014, Volume: 60, Issue: 9, pp. 5736 - 5749.
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Simulation 
– The results show improvement of Quat-KMEE for modeling nonlinear  channel 

when  the input noise is non-Gaussian compared with Quat-KLMS.
– The parameter for the Quat-KMEE were =0.35,      =2.24,      =0.736 
– The Parameter for the Quat-KLMS were =0.35,      =2.24,      
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Errors Probability distribution functions of 
Quat-KLMS and Quat-KMEE

for non-Gaussian signal

Imaginary side i of errorsReal side of errors

Minimum Error Entropy criterion generates more concentrated error 
peaks whereas the variance (MSE) generates wider error distributions.
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Errors Probability distribution functions of 
Quat-KLMS and Quat-KMEE

for non-Gaussian signal

Minimum Error Entropy criterion generates more concentrated error 
peaks whereas the variance (MSE) generates wider error distributions.

Imaginary side j of errors Imaginary side k of errors
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Conclusions
– Derivation and demonstration of convergence of a quaternion kernel adaptive 

algorithm based on minimum error entropy Quat-KMEE based on information 
theoretic learning (ITL).

– Using GHR calculus for Gradients based on quaternion RKHS.

– Simulation results show the convergence curve of the mean square error of the 
new algorithm (QKMEE) versus the existing algorithm (QKLMS) that QKMEE 
has similar speed but better misadjustment.    

– The QKMEE algorithm performed better with non-Gaussian signals compared to 
QKLMS which is based on the MSE criteria adaptive filter and the entropy 
generates more concentrated error peaks, whereas the variance (MSE) generates 
wider error distributions.
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Thank You


