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Motivation

• Predicting optimal classification error is a fun-
damental problem in information fusion, sensor
management and adaptive learning.
• Learning to classify can be very difficult, espe-
cially in high dimensions.
• Learning to predict optimal misclassification er-
ror can be much easier as it bypasses the high
complexity of designing a classifier.
• The optimal meta-learner structure can lead to
insights into optimal classifier design.

Introduction

Bayes error
• Z an observed r.v. with hidden state (label)

Z ∼
 fX w/probability p
fY w/probability q = 1− p

• Bayes error is the best average probability of error
that can be achieved by any classifier of label.
• A sandwich bounds on the Bayes error [2]:
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(1)
• D̃p(fX, fY ) = 4pqDp(fX, fY ) + (p− q)2.
• Dp(fX, fY ) is the HP-divergence [3]:

Dp = 1−
∫ fX(x)fY (x)
pfX(x) + qfY (x)

dx. (2)

Assumptions

• fX and fY have common bounded support set.
• 0 < CL ≤ fX, fY ≤ CU <∞.
• Densities are differentiable of order d.
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K-NN Estimator

• X = {X1, ..., XN} i.i.d. drawn from fX.
• Y = {Y1, ..., YM} i.i.d. drawn from fY .
• M = bNq/pc
• Construct k-th nearest neighbors (k-NN)
graph over X ∪Y.
• E(X, Y ) are edges edges of k-NN graph connecting
dichotomous points.

Direct k-NN estimator D̂p (FR [4] with K-NN):

D̂p(X, Y ) = 1− |E(X, Y )|N +M

2NM
. (3)

Mean-shifted (top), and identical (bottom) Normal
realization from fX and fY with E(X, Y ).

.
Theorem: Bias Presentation
If f1 and f2 are differentiable up to order d, the
bias of the direct k-NN estimator is
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Ci(k/N)i/d + o (k/N) (4)

Theorem: Variance
The variance of the direct k-NN estimator is
bounded as
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Runtime:
• Constructing exact KNN graph using Kd-tree al-
gorithm requires O(kN logN) time complexity.

Ensemble Bias Reduction

• Fix a constant T where T > d.
• Let {D̂k(t)

p }t∈T be T base k-NN estimators.
• T := {t1, ..., tT} is a set of index values.
• k(t) := bt

√
Nc.

Ensemble Weighted K-NN (WNN) estimator:

D̂w
p :=

∑
t∈T

w(t)D̂k(t)
p , (6)

• Bias of ensemble K-NN estimator:
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⇒ Becomes O(1/
√
N) if w(t) is selected (offline) as

min
w

‖w‖2

subject to
∑
t∈T

w(t) = 1,∑
t∈T

w(t)ti = 0, i ∈ N, i ≤ d, (8)

• An equivalent Weighted Nearest Neighbor (WNN)
estimator is proposed which achieves the optimum
MSE rate of O(1/N).

Numerical Results

• Theory validated on simulated and real data sets.
• d = 4 dimensional normal distributions with the
same mean at origin, and σ2

1 = σ2
2 = I4.

• T = {1, ..., 5}.

WNN outperforms other HP estimators.

Robot Navigation Dataset:
• Measurements from a set of ultrasound sensors on
a navigating robot with four different actions.
• Total number of 5456 instances (corresponding to
different timestamps).
• Divergence between the sensor measurements for
Slight-Right-Turn and sharp-right-turn classes.

MSE for a set of ultrasound sensors arranged
circularly around a robot.

Conclusion

• The WNN HP divergence estimator achieves the
optimum MSE rates of O(1/N).
• The computational complexity is O(kN logN).
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