ICASSP 2018 @ Calgary, Canada

17 April, 2018

AASP-L1.4

Deep Clustering with Gated Convolutional Networks

© Li Li^{1,2}, Hirokazu Kameoka¹

 ¹ NTT Communication Science Laboratories, NTT Corporation, Japan
² University of Tsukuba, Japan

Research background

• Multi-speaker separation:

- Separating all sources from observed multi-speaker mixture signals
- Very important for e.g., ASR, hearing aids, ...
- Assumption: spectrograms of speech signals are sparse

Time

2

Deep Neural Network (DNN)-based methods:

[Wang2014, Xu2014, Hershey2016, Kolbak2017]

- Remarkable separation performance
- Significantly improved single channel separation performance

Deep Clustering (DC)

- Greatly improved **speaker-independent** multi-speaker separation
- Theoretically able to handle arbitrary number of sources
- Label permutation invariance:

speaker labels DO NOT need to be consistent over different utterances

Learn DC network [Hershey+2016]

Objective function

BLSTM for DC embedding

- Deep clustering uses bidirectional long short-term memory (BLSTM) to model the embedding process [Hershey+2016].
- Bidirectional long short-term memory (BLSTM):
 - A kind of recurrent neural networks (RNNs)
 - Natural choice for modeling time series data
 - Training becomes challenging when network becomes deeper
 - Difficult to employ parallel implementations

Gated convolutional networks

• Convolutional neural networks (CNNs):

- Practically much easier to train
- Less prone to overfitting
- Well suited to parallel implementations

- Gated convolutional networks [Dauphin 2016]:
 - Formulation:

$$\mathbf{H}_{l} = (\mathbf{H}_{l-1} * \mathbf{W}_{l}^{f} + \mathbf{b}_{l}^{f}) \otimes \sigma(\mathbf{H}_{l-1} * \mathbf{W}_{l}^{g} + \mathbf{b}_{l}^{g})$$

- Data-driven gate mechanism: Gated Linear Units (GLUs)
- Excellent potential for capturing longterm dependencies of time series data
- Suitable for modeling spectrograms since spectrograms have region dependency

This work proposes adopting CNN-based architectures for modeling the embedding process of deep clustering.

Proposed method:

Gated Convolutional Deep Clustering (GCDC)

• We aim to answer …

Q1: what kind of CNN-based architecture is appropriate for DC?

- 1.1D convolution or 2D convolution
- 2. Dilated CNN
- 3. Strided CNN
- 4. Skip architecture

Q2: is it possible to train the model using small amount of dataset ?

5 network architectures

• 1D convolution or 2D convolution:

	Input	Output	filter
1D convolution	Size: 1xT / Channel: F	Size: 1xT / Channel: FxD	$(1,k_T)$
2D convolution	Size: FxT / Channel: 1	Size: FxT / Channel: D	(k_F,k_T)

- Dilated CNN
 - Dilating zeros to handle wider receptive fields
- Strided CNN (Bottleneck)
- Skip architecture
 - Combining output with lower layer outputs

Investigated network architectures:

#1	2D, B, w/o skip	2D convolution / strided CNN
#2	2D, B, w/ skip	2D convolution / strided CNN / skip architecture
#3	2D, DC	2D convolution / dilated CNN
#4	1D	1D convolution
#5	1D, DC	1D convolution / dilated CNN 9

Speaker-Independent Multi-speaker Separation Experiments

Experimental conditions

• Data: Wall Street Journal (WSJ0)

Full: Training/Validation/Test data	30h/ 10h/ 5h
Sub: Training/Validation/Test data	5.5h/ 0.5h/ 5h
Input SNRs	[0, 10] dB
Sampling rate	8 kHz

• Experimental settings

Window length / shift	254 / 127 sample points
Dimension of embedding vector	20 / 40
Optimizer	Adam
Minibatch size	8 or 16
Learning rate	0.0005

• Evaluation: signal-to-distortion ratio improvement (SDRi) [dB]

Separation performance

• 2-speaker separation:

model		Training dataset			
		Sub (5.5h)	Full (30 h)		
	2D, B, w/o skip	3.90	5.49		
proposed	2D, B, w/ skip	3.78	5.23		
	2D, DC	5.78	6.78		
	1D	3.49	5.16		
	1D, DC	3.94	6.36		
conventional (baseline)	BLSTM (our implementation)	1.57	2.46		
	BLSTM, 600 nodes, 2L [1]	_	5.7		

• 3-speaker separation:

	Full (30 h)	
proposed	2D, DC	3.14
	1D, DC	2.48
conventional (baseline)	BLSTM, 600 nodes, 2L [1]	2.2

[1] J. R. Hershey et al., ICASSP, pp. 31-35, 2016.

Separation performance

• 2-speaker separation:

model		Training dataset			
		Sub (5.5h)	Full (30 h)		
	2D, B, w/o skip	3.90	5.49		
proposed	2D, B, w/ skip	3.78	5.23		
	2D, DC	5.78	6.78		
	1D	3.49	5.16		
	1D, DC	3.94	6.36		
conventional	BLSTM (our implementation)	1.57	2.46		
(baseline)	BLSTM, 600 nodes, 2L [1]	-	5.7		

- Models using dilated CNNs outperformed the baseline.
- 2D, DC showed the capability to perform well even only limited scale dataset being provided.

Comparison of various embedding dimensions

• 2-speaker separation (full training dataset, single GPU)

model		Embeddin	g dimension
		D=20	D=40
nronosed	2D, DC	6.78	6.71
proposed	1D, DC	6.36	6.39
conventional	BLSTM, 600 nodes, 2L [1]	5.7	6.0
	BLSTM, 600 nodes, 4L [2] (fine-tuned, very deep)	-	9.4

• Increasing embedding dimension from 20 to 40 did NOT improve 2-speaker separation performance.

• About 3 dB lower than the deeper and fine-tuned BLSTM-based model.

[1] J. R. Hershey et al., ICASSP, pp. 31-35, 2016.[2] Y. Isik et al., Interspeech, pp. 545-549, 2016.

• 2-speaker separation

model		Trainin	g data		
		Sub (5.5h)	Full (30h)	Computational cost	
	roposed 2D, DC	5L	5.78	6.78	1 GPU / 1 day
Proposed 2D, DC		8L	6.77	8.32	2 GPUs / 2 days
		14L	7.26	9.07	4 GPUs / 3 days
conventional	BLSTM, 600 nodes, 2L [1]		-	6.0	About 1 week (our implementation)
	BLSTM, 600 nodes, 4L [2] (fine-tuned, very deep)		-	9.4	

- The proposed method achieved a comparable result to [2].
- The proposed method can be trained quickly even with deep architectures.

[1] J. R. Hershey et al., ICASSP, pp. 31-35, 2016.[2] Y. Isik et al., Interspeech, pp. 545-549, 2016.

• 2-speaker separation

model				Training data						
				(5	Sub 5.5h)	Full (30h)	Computational cost	•		
				5L		[]	5.78	6.78	1 GPU / 1 day	
Propos	ed	2D, DC	C 8L			6	5.77	8.32	2 GPUs / 2 days	
			14L		7	7.26	9.07	4 GPUs / 3 days		
conventi	onal	BLSTM, 600 nodes, 2L [1]		1]			6.0	About 1 week (our implementation))	
		BLSTM, (fine-t	BLSTM, 600 nodes, 4L [2] (fine-tuned, very deep)		2]		_	9.4		
	mo	odel Training data			S	DRi [c	IB]	Computational cost		
2	D, DC, 14L 1h			5.56			4 GPUs / 4 hours			

[1] J. R. Hershey et al., ICASSP, pp. 31-35, 2016.[2] Y. Isik et al., Interspeech, pp. 545-549, 2016.

Conclusions

• Proposed method:

- Gated Convolutional Deep Clustering (GCDC)
- Using gated convolutional networks to model embedding process of deep clustering

Appropriate architecture for multi-speaker separation tasks

- Gated convolutional networks / 2D convolution / Dilated CNN
- Highest score: 9.07dB
- GCDC can be trained quickly and perform well even only limited dataset available
 - 1h training data / 4GPUs / 4hours / 5.56dB

• Future work:

- Much deeper architectures
- Fine-tuning the models
- Application of gated convolutional networks to Deep Attractor Networks (DANet)[Chen+2017]

Thank you for your attention!