Correlated Tensor Factorization for Audio Source Separation Kazuyoshi Yoshii (Kyoto University/RIKEN AIP)

Proposed Method: Correlated Tensor Factorization (CTF)

An ultimate approach to nonnegativity-based tensor decomposition that includes as its special cases nonnegative matrix factorization (NMF), positive semidefinite tensor factorization (PSDTF), and nonnegative tensor factorization (NTF)

Parameter
estimation
(majorization-
minimization
algorithm)
$$p_{kf} = \sum_{t=1}^{t} h_{kt} y_{ft}$$

 $w_{kf} = \sum_{t=1}^{T} h_{kt} x_{ft} y_{ft}^{-2}$
 $w_{kf} \leftarrow p_{kf}^{-1} \#(w_{kf} q_{kf} w_{kf}) = w_{kf} \left(\frac{q_{kf}}{p_{kf}}\right)^{\frac{1}{2}}$ $P_{k} = (I_{F,F} \otimes \mathbf{1}_{T}) \left((\mathbf{1}_{F,F} \otimes \mathbf{H}_{k}^{T}) \odot \mathbf{Y}^{-1} \mathbf{X} \mathbf{Y}^{-1}\right) (I_{F,F} \otimes \mathbf{1}_{T})$
 $Q_{k} = (I_{F,F} \otimes \mathbf{1}_{T}^{T}) \left((\mathbf{1}_{F,F} \otimes \mathbf{H}_{k}^{T}) \odot \mathbf{Y}^{-1} \mathbf{X} \mathbf{Y}^{-1}\right) (I_{F,F} \otimes \mathbf{1}_{T})$
 $W_{k} \leftarrow P_{k}^{-1} \#(w_{k} Q_{k} W_{k})$
Geometric mean of
two positive semidefinite matrices $r_{kt} = \sum_{f=1}^{F} w_{kf} y_{ft}^{-1}$
 $s_{kt} = \sum_{f=1}^{F} w_{kf} x_{ft} y_{ft}^{-2}$ Geometric mean of
two nonnegative scalars
two nonnegative scalars
two nonnegative scalars
 $h_{kl} \leftarrow r_{kt}^{-1} \#(h_{kt} s_{kt} h_{kl}) = h_{kt} \left(\frac{s_{kt}}{r_{kt}}\right)^{\frac{1}{2}}$ Geometric mean of
two nonnegative scalars
two nonnegative scalars
 $h_{kl} \leftarrow r_{kt}^{-1} \#(h_{kt} s_{kt} h_{kl}) = h_{kt} \left(\frac{s_{kt}}{r_{kt}}\right)^{\frac{1}{2}}$ $R_{k} = (\mathbf{1}_{F}^{T} \otimes \mathbf{I}_{T,T}) \left((\mathbf{W}_{k}^{T} \otimes \mathbf{1}_{T,T}) \odot \mathbf{Y}^{-1}\right) (\mathbf{1}_{F} \otimes \mathbf{I}_{T,T})$
 $S_{k} = (\mathbf{1}_{F}^{T} \otimes \mathbf{I}_{T,T}) \left((\mathbf{W}_{k}^{T} \otimes \mathbf{1}_{T,T}) \odot \mathbf{Y}^{-1}\right) (\mathbf{1}_{F} \otimes \mathbf{I}_{T,T})$ Wiener filtering
Complexity $s_{fk}^{(k)} = y_{ft}^{(k)} y_{ft}^{-1} s_{ft}$
 $f_{ft}^{-1} y_{ft}^{-1} s_{ft}$ $\hat{s}_{t}^{(k)} = \hat{\mathbf{Y}_{t}^{(k)} \hat{\mathbf{Y}_{t}^{-1}} \hat{s}_{f}$
 $O(KFT^{3})$ $\mathbf{s}_{t}^{(k)} = \mathbf{Y}_{t}^{(k)} \mathbf{Y}_{t}^{-1} \hat{s}_{f}$
 $\mathbf{U}^{(k)} = \mathbf{Y}_{t}^{(k)} \hat{\mathbf{Y}_{t}^{-1} \hat{s}_{f}$ $\mathbf{s}_{t}^{(k)} = \mathbf{Y}_{t}^{(k)} \mathbf{Y}_{t}^{-1} \hat{s}_{f}$ $\mathbf{s}_{t}^{(k)} = \mathbf{Y}_{t}^{(k)} \mathbf{Y}_{t}^{-1} \hat{s}_{f}$

Computationally-Efficient Approximation of LD-CTF

Block-diagonalization of basis matrices

The time-frequency domain is divided into independent blocks each of which consists of P frequency bins and Q time frames (the TF bins of a block are correlated with each other and independent from the other TF bins)

Joint diagonalization of covariance matrices

LD-PSDTF in the time-frequency domain is equivalent to IS-NMF in a linearly-transformed domain if W's and H's can be jointly diagonalized by using the transform matrices A probabilistic model in the time-frequency domain

Evaluation and Future Work

A mixture signal was synthesized by concatenating 7 sounds (C4, E4, G4, C4+E4, C4+G4, E4+G4, C4+E4+G4) (16 [kHz], 1.2 [s] * 7 = 8.4 [s], F=256, T=840)

 $\mathcal{O}(KFTP^2Q^2) \ll \mathcal{O}(KF^3T^3)$

Estimation result of (P, Q) = (64, 20)

Complex spectrogram	$\langle K \rangle$	
$\mathbf{S} \sim \mathcal{N}_c$	$ig oldsymbol{0}, \sum oldsymbol{W}_k \otimes oldsymbol{H}_k ig $	
$F \times T$	$\left\langle \begin{array}{c} \sum_{k=1}^{F\times F} & T\times T \\ k=1 \end{array} \right\rangle$	

igstarrow Linear transform based on $oldsymbol{A}$ and $oldsymbol{B}$

A probabilistic model in the new domain $ASB^{H} \sim \mathcal{N}_{c} \left(\mathbf{0}, \sum_{k=1}^{K} \underbrace{\mathbf{Diagonal matrix}}_{F \times F \ F \times F \ F \times F} \mathbf{AW}_{k} \mathbf{A}^{H} \otimes \underbrace{\mathbf{BH}_{k} \mathbf{B}^{H}}_{T \times T \ T \times T} \mathbf{Diagonal matrix} \right)$

IS-NMF and estimation of transform matrices could be iterated in a unified probabilistic framework to approximate LD-CTF Related work: independent vector analysis (IVA) (Ono 2011), independent low-rank matrix analysis (ILRMA) (Kitamura 2016)

•

	IS-NMF	LD-PSDTF		Block-d	iagonalized	LD-CTF
(P, Q)	(1,1)	(256, 1)	(1,840)	(128, 10)	(64, 20)	(32, 40)
SDR	18.88	21.58	21.04	19.68	20.60	20.21
SIR	24.14	27.01	24.67	25.29	26.17	25.45
SAR	20.45	23.14	23.50	21.47	21.47	22.15

Block-diagonalized LD-CTF outperformed IS-NMF, but underperformed LD-PSDTF

 → Strong correlations between harmonic partials should be taken into account by using the jointdiagonalized LD-CTF (future work)

LD-CTF should be initialized by using IS-NMF to avoid the bad local optima

→ Since KL-NMF is empirically known to be more robust than IS-NMF, **vN-CTF** is considered to be more robust than LD-CTF (future work)