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Highlights

•We consider the problem of translation-invariant denoising by
sparse coding w.r.t. an overcomplete dictionary.
We compare two approaches:
– Directly solving a global optimization as done in convolutional

sparse coding.
– Solving multiple partial optimization problems and aggregate the

partial estimates as in cycle spinning.
•We analyze both approaches by decomposing their mean squared

error into the bias and variance components.
•We show that on natural images global optimization features a

lower bias and larger variance than aggregation of partial esti-
mates.
•Global optimization is superior only when images admit a very

sparse representation, while for natural images the two perform
comparably.

Results on Natural Images
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Results under Extreme Sparsity

SNR(ŷglob)− SNR(ŷaggr)
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Image Denoising

We consider images corrupted by white Gaussian noise:

s = y + η , η∼N (0, σ2) . (1)

Given an orthonormal basis D1∈RN×N and all its translates Di∈RN×N ,
the denoising estimate ŷ is computed as:

ŷ = Dx̂ , D = (D1 · · · DN) ∈ RN×N
2
, (2)

where x̂ ∈ RN 2
is assumed to be sparse. We focus on sparse coding prob-

lem, ignoring issues related to dictionary learning.

Aggregation of Partial Estimates:
For each translate Di, we solve:

x̂i = argmin
u∈RN

1

2
‖Diu− s‖22 + λR(u) , i ∈ {1, . . . , N}, (3)

where R(·) = ‖·‖1 or R(·) = ‖·‖0. The final estimate ŷaggr is obtained ag-
gregating the N estimates Dix̂i:

ŷaggr =
1

N

N∑
i=1

Dix̂i = D

(
x̂T0 · · · x̂

T
N

)
T

N
= Dx̂aggr . (4)

Global optimization:
We jointly consider all the translates:

x̂glob = argmin
x∈RN2

1

2
‖Dx− s ‖22 + λR(x) . (5)

This problem can be formulated in a convolutional form (Zeiler et al., IEEE
CVPR 2010):

x̂glob = argmin
x∈RN2

1

2

∥∥∥∥ M∑
m=1

dm ∗ x[m] − s

∥∥∥∥2
2
+ λR(x) , (6)

and the final estimate is

ŷglob = Dx̂glob =

M∑
m=1

dm ∗ x̂[m] . (7)

Regularization and solutions:
When R(u) = ‖u‖1 the solution of (3) is given by the soft-thresholding
operator Sλ : RN → RN

x̂i = Sλ(DT
i s), [Sλ(u)]j = sign(uj)·max(|uj|−λ, 0), j ∈ {1, . . . , N}. (8)

Problem (5-6) can be solved using an efficient implementation in the Fourier
domain of the ADMM algorithm (Wohlberg, IEEE TIP 2016).
When R(u) = ‖u‖0 the solution of (3) is given by the hard-thresholding
operator Hλ : RN → RN

x̂i = Hλ(DT
i s), [Hλ(u)]j = uj · 1{|uj|>λ}, j ∈ {1, . . . , N} . (9)

Problem (5) can be solved using Iterative Thresholding Algorithm (Kowal-
ski, IEEE ICIP 2014). However, (5) is not convex and this algorithm con-
verges only to a local minimum.

Experiments and Discussions

Settings:
•D1 is the Daubechies db3 wavelet dictionary with 4 decomposition levels.

• λ is tuned each time to achieve the lowest mean squared error.

•Natural images: Lena, Barbara, Man, Peppers, Cameraman corrupted
by noise with σ ∈ {5, 10, . . . , 40}. Results are averaged over 50 realiza-
tions of noise.

• Very Sparse Synthetic images: 128× 128 noise-free image y = Dx,
where x has L nonzero components at random positions. σ is such that
SNR(s) = τ . We set L ∈ {20, 21, . . . , 212}, τ ∈ {−25,−22.5, . . . , 25}, 50
realizations of y for each pair (L, τ ), and 50 realizations of s for each y.

Results and Concluding Remarks:
• Estimates from global optimization are characterized by a lower bias

and larger variance than the aggregation of partial estimates.

•We speculate that the larger variance of global estimates is due to the
high redundancy of D, since shifted atoms are highly correlated.

• The two approaches achieve similar performance when R = ‖·‖1.
•When R = ‖·‖0 the variance of global estimates is even larger. This

is due to the non-convexity of the global optimization problem, since we
can compute only local minima that are subject to the particular noise
realization.

• It may be unreasonable to approach the natural image denoising by the
computationally demanding convolutional sparse coding, as this does not
outperform cycle spinning.


