Domain Adversarial Training for Accented Speech Recognition

Sining Sun ^[1-3], Ching-Feng Yeh ^[2], Mei-Yuh Hwang ^[2], Mari Ostendorf ^[3], Lei Xie ^[1]

> Northwestern Polytechnical University ^[1] Mobvoi Al Lab, Seattle, USA ^[2] University of Washington, Seattle , USA ^[3]

Outline

- Introduction
- Domain Adaptation
- Domain Adversarial Training (DAT)

Northwe

デルスキナタ

Mobvoi

- DAT for ASR
- Experimental Results
- Conclusion

Introduction

- Challenges in ASR
 - Noise, reverberation, accents.....
 - Mismatch between training and test data
 - Lack of supervised training data
- Our work
 - Improve ASR performance for accented speech, using unsupervised domain adaptation
 - Learn accent-invariant features using DAT
 - Explore how semi-supervised learning can influence the performance of DAT

Mobyo

Domain Adaptation

- Domain adaptation
 - Training data
 - Labeled source domain data
 - Labeled or unlabeled target domain data
 - Test data
 - Data with the distribution of the target domain
 - Task
 - Improve performance on the test set using limited target domain data

Mobyoi

UNIVERS

 $P_{s}(\lambda$

Domain Adversarial Training

- Given labeled or unlabeled target domain data
 - DAT tries to learn features that are
 - Domain-invariant
 - Classification-discriminative

LIN VERS

DAT for Speech Recognition

Gradient reverse layer (GRL) based adversarial training

□ GRL: multiply a constant **negative** factor $(-\lambda)$ to gradients generated by $G_d(f, \theta_d)$

DAT for Speech Recognition

Experiment Set-up

Dataset

Source domain training data

- 360 hours standard accent Mandarin training data with transcriptions (Std)
- Target domain training data
 - Transcribed accented Mandarin speech from: HaiNan (HN), SiChuan (SC), GuangDong (GD), JiangXi (JX), JiangSu (JS) and FuJian (FJ)
 - 100 hours per accent
- Test and validation data
 - 5 hours per-accent
 - 5 hours Std data

Experiment Set-up

- Acoustic feature
 - 23-dimensional filterbanks with 3-dimensional pitch
- Acoustic model
 - TDNN with LF-MMI
 - 7 layers and each layer has 625 hidden units with ReLU
 - 5998 output units
 - Trained by Kaldi
- Language model
 - 3-gram language model trained with all the text in the training set

Mobyoi

Multi-Accent System Results

 Accent-invariant feature extraction across all accents using unsupervised DAT

Baseline:

Trained using 360 hours Std data **DAT:**

Trained using 360hours Std data

- + 600 hours accented data without transcripts
- + DAT

Oracle:

Trained using 360hours Std data

+ 600 hours accented data with human transcripts

 Using unsupervised DAT improves the ASR performance on accented test data

Per-Accent Experiments

- Three accents selected: FJ, SC, HN
- A different baseline system for each of the following conditions on 100 hours accented speech data
- Compare DAT vs MTL for different transcription cases

Polytechnical Universit

리리다만

Per-Accent System Results

CER of different systems

- DAT alone always helps
- ASR transcripts can reduce CER further
- With ASR transcripts, DAT helps, but the contribution shrinks

DAT vs MTL

Relative CER improvement of accent-specific DAT

- When no transcript or ASR transcripts were available, DAT always helps
- DAT is always better than MTL

Conclusion

- Conclusion
 - Integrated DAT into TDNN AM training for accented speech recognition
 - 7.4% relative CER reduction using unsupervised DAT
 - Explored how automatic transcripts influence DAT performance
 - 20% relative CER reduction when combining DAT and ASR transcripts
- Future work
 - Compare DAT with other emerging deep domain adaption methods
 - Extend DAT to far-field scenario

Thank you!

UNIVERSITY of

ЭN