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1. SYNOPSIS

In Text-To-Speech (TTS) synthesis w/ Short-Term Fourier Transform (STFT) spectra:

(1) Proposes Generative Adversarial Networks (GANS)!

ll-based training algorithm using low-/multi-resolution spectra.

(2) Demonstrates that the proposed algorithm using GANs w/ low-resolution spectra improves synthetic speech quality.

2. CONVENTIONAL ALGORITHMS

3. PROPOSED ALGORITHMS

4. EXPERIMENTAL EVALUATION

DNN-based TTS w/ STFT spectral?!

(1) Generate raw STFT amplitude spectra.

(2) Reconstruct phase spectra by using
Griffin and Lim’s method®3!

Pros. avoiding a vocoding process
Cons. over-smoothing of amplitude spectra

GAN-based TTS w/ vocoders!4l
(1) Update discriminative models D ().
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(2) Update acoustic models G(+).
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Motivation

Amplitude spectra: high-dimensional features
including spectral & excitation characteristics.

GAN-based TTSI3!: effective for spectral
envelopes (i.e., mel-cepstral coefficients).

Assumption:
low-res. spectra = spectral envelopes
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GAN-based TTS w/ low-res. STFT spectra
__Generated Natural
Linguistic Y spectral spectral Y

feats. & Log FO [ amplitudes Luse(y,9) a@mplitudes

Ppol L
Acoustic | Average ﬂ
models | pooling

G(+) Low-res.
Approximately emulates
the filter bank extraction

LADV ()
natural

L]

DM ()
Ey(L) [LaDV]

discriminative models
L ~ ~ L) EjlL
L(G oW) ,¥) = Lyse(1,y) + w]() ) VSE! LADV(y(L))

LmsE]
Lapv]

E, .
Lc(y,¥) = Luse (¥, ) + CUD]Ey% Lapv(¥)

GAN-based TTS w/ multi-res. STFT spectra
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Experimental conditions

4,007 utterances taken fromJapanese female speaker

Dataset (subset of JSUTDP! corpus, 3,808/199 for training/evaluation)

STFT analysis

Frame length: 400, shift length: 80, FFT length: 1024,
analysis window: Hamming

Average pooling

Zero padding: 6, pooling width w: {14, 30, 70}, stride: w/2

wp and a)I()L) 1.0

Dims. of x/y/y

444 (linguistic feats, durations, Log FO, UV)/513/{74, 34, 14}
(dim. of y(M was changed in accordance with w)

DNN architectures

Feed-Forward (see our paper)

MSE

—

:p < 0.001
:p > 0.1

Subjective evaluation (preference AB tests)
MSE: minimizing Lysg(y, ¥)!%
ADV: minimizing Lg(y, )4

ADV-Low: minimizing L%LOW) (y,») (proposed)
ADV-Multi: minimizing L(GM“lti) (y,¥) (proposed)

Results:
(1) ADV & ADV-Multi didn’t improve speech quality.
— Because of difficulty in minimizing
distribution differences in original resolution

(2) ADV-Low improved speech quality.
— Effect of the spectral envelopes compensation

ADV-Low ADV-Multi

ADV-Low (proposed) (proposed)
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Examples of 513-c

imensional amplitude spectra
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