
2. CONVENTIONAL ALGORITHMS

 GAN-based TTS w/ vocoders[4]

 (1) Update discriminative models 𝐷 ⋅ .

 (2) Update acoustic models 𝐺 ⋅ .
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3. PROPOSED ALGORITHMS 4. EXPERIMENTAL EVALUATION
• Experimental conditions
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 Motivation

 Amplitude spectra: high-dimensional features 
including spectral & excitation characteristics.

 GAN-based TTS[3]: effective for spectral 
envelopes (i.e., mel-cepstral coefficients).





Dataset
4,007 utterances taken fromJapanese female speaker

(subset of JSUT[5] corpus, 3,808/199 for training/evaluation)

STFT analysis
Frame length: 400, shift length: 80, FFT length: 1024,

analysis window: Hamming 

Average pooling Zero padding: 6, pooling width 𝑤: {14, 30, 70}, stride:  𝑤 2

𝜔D and 𝜔D
L 1.0

Dims. of 𝒙/𝒚/𝒚 L 444 (linguistic feats, durations, Log F0, UV)/513/{74, 34, 14}

(dim. of 𝒚(L) was changed in accordance with 𝑤)

DNN architectures Feed-Forward (see our paper)

 DNN-based TTS w/ STFT spectra[2]

 (1) Generate raw STFT amplitude spectra.
 (2) Reconstruct phase spectra by using
 Griffin and Lim’s method[3].

 Pros. avoiding a vocoding process

 Cons. over-smoothing of amplitude spectra
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Minimizing 
approx. JS-divergence

 Assumption:
 low-res. spectra ≒ spectral envelopes
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 GAN-based TTS w/ low-res. STFT spectra
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 GAN-based TTS w/ multi-res. STFT spectra





Approximately emulates
the filter bank extraction 

 Subjective evaluation (preference AB tests)

 MSE: minimizing 𝐿MSE 𝒚,  𝒚 [2]

 ADV: minimizing 𝐿G 𝒚,  𝒚 [4]

 ADV-Low: minimizing 𝐿G
Low

𝒚,  𝒚 (proposed)

 ADV-Multi: minimizing 𝐿G
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 Results:
 (1) ADV & ADV-Multi didn’t improve speech quality.

 ⇒ Because of difficulty in minimizing 
 distribution differences in original resolution

 (2) ADV-Low improved speech quality.
 ⇒ Effect of the spectral envelopes compensation
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1. SYNOPSIS

• In Text-To-Speech (TTS) synthesis w/ Short-Term Fourier Transform (STFT) spectra:
• (1) Proposes Generative Adversarial Networks (GANs)[1]-based training algorithm using low-/multi-resolution spectra.
• (2) Demonstrates that the proposed algorithm using GANs w/ low-resolution spectra improves synthetic speech quality.


