NON-PARALLEL VOICE CONVERSION USING VARIATIONAL AUTOENCODERS **CONDITIONED BY PHONETIC POSTERIORGRAMS AND D-VECTORS** Yuki Saito + +, Yusuke Ijima +, Kyosuke Nishida +, and Shinnosuke Takamichi + ⁺The University of Tokyo, Japan ⁺NTT Corporation, Japan

(1) Converted speech quality is degrad due to vanishing phonetic properti (2) It supports only one-to-one VC.

Problems

[References] [1] Hsu et al., Proc. APSIPA ASC, 2016. [2] Hojo et al., IEICE Trans. on Info. And Syst., 2017. [3] Dilokthanakul et al., Proc. ICASSP, 2014. [6] Luong et al., Proc. ICASSP, 2014. [6] Luong et al., Proc. ICASSP, 2017. [3] Dilokthanakul et al., Proc. ICASSP, 2016. [4] Sun et al., Proc. ICASSP, 2016. [5] Variani et al., Proc. ICASSP, 2016. [5] Variani et al., Proc. ICASSP, 2014. [6] Luong et al., Proc. ICASSP, 2017. [3] Dilokthanakul et al., Proc. ICASSP, 2016. [5] Variani et al., Proc. ICASSP, 2017. [3] Dilokthanakul et al., Proc. ICASSP, 2016. [5] Variani et al., Proc. ICASSP, 2017. [3] Dilokthanakul et al., Proc ICASSP 2018 SP-P6.1 ©Yuki Saito, 18/04/2018

1. SYNOPSIS

Our approaches for non-parallel Voice Conversion (VC) using Variational AutoEncoders (VAEs): (1) Introduce Phonetic PosteriorGrams (PPGs) for dealing with speech quality degradation. (2) Extend conventional one-to-one VC to many-to-many VC (any speakers to any other speakers).

CONVENTIONAL VAE-BASED VC ^[1]	3. PROPOSED VAE-B
ining VAEs for VC f_{a} f_{a} f	VC using VAEs w/ PPGs and (1) Phonetic contents are giv \Rightarrow Phonetic contents ca (2) Discrete speaker codes ar continuous d-vectors ^[5] . \Rightarrow Any speakers' charac converted into any o $PPGs^{[3]}_{Z_p} \Rightarrow Latent f_{phonetic}^{Z_p}$
$x, y_{s}) = -D_{KL} \left(q_{\phi}(z x) \mathcal{N}(z; 0, I) \right) + \underbrace{\mathbb{E}_{q_{\phi}(z x)} [\log p_{\theta}(x z, y_{s})]}_{Regularization term of z}$ Regularization term of z Reconstruction error of x	Pre-trained speech recognition u x Encodor Z
$x \rightarrow F_{x} = x + y + y + y + y + y + y + y + y + y +$	Adaptation data da
 Description of the present phonetic contents. Converted speech quality is degraded due to vanishing phonetic properties. It supports only one-to-one VC. 	Estimating unknown speake (1) Speaker code adaptation [[] Using backprop. to ada (2) <i>d</i> -vector averaging Using averaged <i>d</i> -vec. i the speaker's adaptatic

