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3. PROPOSED VAE-BASED VC

• Estimating unknown speaker representation
• (1) Speaker code adaptation[6]

• Using backprop. to adapt speaker codes
• (2) 𝑑-vector averaging
• Using averaged 𝑑-vec. in voiced region of
• the speaker’s adaptation data

2. CONVENTIONAL VAE-BASED VC[1]

• Training VAEs for VC

• Conversion using trained VAEs

• Assumption: 𝒛 is independent of 𝒚𝑠
• ⇒ Expected to represent phonetic contents.

• Problems
• (1) Converted speech quality is degraded
• due to vanishing phonetic properties.
• (2) It supports only one-to-one VC.

4. EXPERIMENTAL EVALUATION
• Experimental conditions

• Objective evaluation (Mel-Cepstral Distortion)

• Subjective evaluation (MOS/DMOS tests)
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 VC using VAEs w/ PPGs and 𝑑-vectors
 (1) Phonetic contents are given as PPGs[4].

 ⇒ Phonetic contents can be restored!

 (2) Discrete speaker codes are replaced with

 continuous 𝑑-vectors[5].

 ⇒ Any speakers’ characteristics can be 

 converted into any others!

Speech corpora

(a) For recognition/verification models: including 260 speakers
(130 male and 130 female speakers)

(b) For VC models: divided parallel 425 utterances
(2 male and 1 female speakers)

Speech params.
(including Δ & ΔΔ)

40-dim. mel-cepstral coefficients, Log F0, 10-dim. bap

DNN architecture Feed-Forward (see our paper)

Dim. of
PPGs/𝑑-vec./𝒛

56 (time variant)/16 (time invariant)/64

VC settings
One-to-one: VC models are trained with corpora (b).

Many-to-many: VC models are trained with corpora (a).
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1. SYNOPSIS

• Our approaches for non-parallel Voice Conversion (VC) using Variational AutoEncoders (VAEs):
• (1) Introduce Phonetic PosteriorGrams (PPGs) for dealing with speech quality degradation.
• (2) Extend conventional one-to-one VC to many-to-many VC (any speakers to any other speakers).
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