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1. SYNOPSIS

Our approaches for non-parallel Voice Conversion (VC) using Variational AutoEncoders (VAES):

(1) Introduce Phonetic PosteriorGrams (PPGs) for dealing with speech quality degradation.
(2) Extend conventional one-to-one VC to many-to-many VC (any speakers to any other speakers).

2. CONVENTIONAL VAE-BASED VC!! 3. PROPOSED VAE-BASED VC 4. EXPERIMENTAL EVALUATION
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