Attention-based End-to-end Speech Recognition on Voice Search

Changhao Shan^{1;2}, Junbo Zhang², Yujun Wang², Lei Xie¹

1. Shaanxi Provincial Key Lab of Speech and Image Information Processing, Northwestern Polytechnical University, Xi'an

2. Xiaomi Corporation, Beijing

Outline

- A brief review of LAS
- Train a LAS for Mandarin
 - Embedding
 - Frame skipping
- Attention mechanism
 - Content-based vs. Location-based
 - Attention smoothing
- Decoding
 - Softmax with temperature
 - Language model integration
- Experiment
 - Dataset
 - LAS setup
 - Result
- Conclusion

Listen, Attend and Spell (LAS)

- Note that the "LAS" here is refer to both the works [1] and [2] (they are almost same)
- Listen: or Encoder, extracts higher-level features
 - The Encoder does not require to be pyramidal
- Attend: weights the outputs of the Encoder
- Spell: or Decoder, generates a prediction of characters

Chan, W., Jaitly, N., Le, Q., & Vinyals, O. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2016.
Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. End-to-End Attention-based Large Vocabulary Speech Recognition. ICASSP 2016

The Listen module

- The encoder is normally implemented as a bidirectional recurrent network
- Zero-pad the input feature into a fixed-length
- The Listen module maps input feature **x** (padded) into a fixed-length feature representation **h**

 $\mathbf{h} = EncoderRNN(\mathbf{x})$

The Attend and Spell module

- The Attend module weights the encoded features $\boldsymbol{h},$ resulting in a context vector \boldsymbol{c}
- The Spell module (or Decoder) takes the attention context vector
 c and the previous prediction to generate a prediction of the next output
 - $c_i = AttendtionContext(s_i, \mathbf{h})$
 - $s_i = DecodeRNN([y_{i-1}, c_{i-1}], s_{i-1})$
 - $P(y_i | \mathbf{x}, y_{i-1}) = CharacterDistribution(c_i, s_i)$

Challenge of training LAS on Mandarin

- The attention model is difficult to converge on Mandarin ^[1]
 - Many thousands of characters
 - Chinese characters give limited information on the sounds of the spoken language
 - In some work, phonetic representation (pinyin) was introduced to help training
- We aim to train a Mandarin LAS using Chinese characters directly (without pinyin's help)

Train Mandarin LAS

- Tricks we tried but still not converge (CER > 95%)
 - Adjust learning rate
 - Adjust batch size
 - L2 regularization
 - Dropout
 - Adam optimizer
 - Pyramidal encoder ^[1]
- Worked tricks for converging
 - Character embedding
 - Frame skipping

Character embedding

- The character embedding layer maps one-hot vectors into embedded vectors
 - dim of the one-hot vector (N): 6,922
 - dim of the embedded vector (M): 1,024
- It is updated in the whole LAS model training procedure
- The i-th row of W is the embedded vector of the character with index i
 - acts as a lookup-table

Frame skipping

- Utterance length of our dataset
 - 900 frames after padding
- Inspired by low frame rate ^[1]
 - There is no need to assume signal stationarity for RNN
 - Studies shows that low-frame rate not only makes decoding faster, but also improves the accuracy
- Borrowing the low frame rate idea, we do frame skipping in the training of LAS encoder

Works on attention

- Compared two attention methods
 - Content-based attention
 - Location-based attention
- Attention smoothing

Attention mechanism

- For the *i*-th step to generates an output y_i :
 - The attention mechanism weights the feature representation ${\bf h}$ by the weights α_i to generate a context feature
 - α_i is learned from **h** and the Decoder LSTM hidden state s_{i-1}
 - $e_{i,j}$: how well the inputs around position j and the output at position i match

$$c_{i} = \sum_{j=1}^{T} \alpha_{i,j} h_{j}$$
$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{j=1}^{T} \exp(e_{i,j})}$$
$$e_{i,j} = Score(s_{i-1}, h_{j})$$

Content-based vs. Location-based

• Content-based attention ^[1]

 $e_{i,j} = \boldsymbol{\omega}^T \tanh(\mathbf{W}s_{i-1} + \mathbf{V}h_j + \mathbf{b})$

• Location-based attention ^[2]

 $e_{i,j} = \boldsymbol{\omega}^T \tanh(\mathbf{W}s_{i-1} + \mathbf{V}h_j + \mathbf{U}\mathbf{f}_i + \mathbf{b})$

 $\mathbf{f}_i = \mathbf{F} * \alpha_{i-1}$

 $\alpha_{i,j} = Softmax(e_{i,j})$

Attention	CER / %	SER / %
Content-based	4.05	9.10
Location-based	3.82	8.17

[1] Dzmitry Bahdana, Bahdanau, D., Cho, K., & Bengio, Y. Neural Machine Translation By Jointly Learning To Align and Translate. ICLR 2015
[2] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. Attention-Based Models for Speech Recognition. NIPS 2015

Inspire of attention smoothing

- The α_i distribution is typically very sharp, and thus it focuses on only a few frames of ${\bf h}$
- Long context information may be useful for the voice search task
- In the Softmax, the exponential function (unbounded) could be replaced by logistic sigmoid (bounded)^[1]

[1] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. Attention-Based Models for Speech Recognition. NIPS 2015

Attention smoothing

- We simply replace Softmax by logistic sigmoid
- Although $\alpha_{i,j}$ is no longer required to sum to 1.0, $\alpha_{i,j}$ do not depends on all $e_{i,j}$ though T
- It makes the attention computing faster

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{j=1}^{T} \exp(e_{i,j})} \quad \Longrightarrow \quad \alpha_{i,j} = \frac{1}{1 + \exp(-e_{i,j})}$$

Attention	CER / %	SER / %
Location-based	3.82	8.17
+ Attention smoothing	3.58	7.43

Decoding

- We used a simple left-to-right beam search algorithm during decoding ^[1]
- Temperature ^[2]
 - hyper-parameter in Softmax to smooth the distribution of characters
 - increasing temperature make the distribution over characters more uniform

$$p(y_i | \mathbf{x}, y_{i-1}) = \frac{\exp(\frac{o_t}{\tau})}{\sum_j \exp(\frac{o_j}{\tau})}$$

• The temperature might be as another attention smoothing way ^[3], but we have not yet get a good result with it

[1] Sutskever, I., Vinyals, O., & Le, Q. V. Sequence to Sequence Learning with Neural Networks. Nips 2014

[2] Chorowski, J., & Jaitly, N. Towards better decoding and language model integration in sequence to sequence models. Interspeech 2017

^[3] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. Attention-Based Models for Speech Recognition. NIPS 2015

Language model

- The Spell module of the model is an implicit character-level language model
 - predict the next character according the history
- The model itself is insufficient to learn a complex language mode ^[1]
- The transcripts of the acoustic training data are limit
 - we have huge text data without audio

External language model

- Build a character-level external language model ^[1]
 - Rewrite an existed word-level n-gram LM as WFST (G)
 - input/output label: word (a word consist of several Chinese characters)
 - Use a WFST (L) to transduce character sequence to word
 - input label: character
 - output label: word
 - Compose L and G to get external character-level LM

 $T = \min(\det(L^{\circ}G))$

• Combines the internal and the external language model

$$C = -\sum_{i} [\log p(y_i | \mathbf{x}, y_{i-1}, \cdots, y_1) + \gamma T]$$

Dataset

- 3,000 hours MiTV dataset
- The longest utterance is about 10 secs
- Collected from the microphone on the MiTV remote controller
- Includes 6,922 Chinese characters
- The test set includes 3000 utterances

Experiment setup

- Acoustic feature
 - 80 Mel-scale filter-bank coefficients
 - delta and delta-delta acceleration
 - mean and variance normalization for each speaker
- Encoder
 - 3-layer BLSTM
 - 512 LSTM units per layer
- Decoder
 - 1-layer LSTM
 - 256 LSTM units
 - 6,925 output labels

Experiment setup

- Hyper-parameters
 - Initialized with the normalized initialization
 - Gradient norm clipping to 1
 - Gaussian weight noise
 - L2 weight decay 1e-5
 - ADAM as the optimization method
 - Learning rate 1e-3 (1e-4 after it converged)
 - Cross-entropy as the cost

Results

• The effect of the decoding beam width for the content-based attention and attention smoothing (τ = 1)

Results

• The impact of the temperature for content-based attention and attention smoothing (beam-size=30)

Results

• Results of our attention-based models with a beam size of $30,\tau=2$ and $\gamma=0.1$

	CER / %	SER / %
CTC	5.29	14.57
Content based attention	4.05	9.10
+ trigram LM	3.60	7.20
Location based attention	3.82	8.17
+ trigram LM	3.26	6.33
Attention smoothing	3.58	7.43
+ trigram LM	2.81	5.77

Conclusions

- With some tricks, Mandarin LAS could be trained without pinyin
 - Embedding
 - Frame skipping
- Location-based attention is more suitable in voice search task
- Attention smoothing further improves the accuracy, and reduces the computational complexity
- An external LM can further improve the performance
- Decoding with a wider beam gives little-to-none benefit
- The temperature can smooth the distribution of characters and achieve a better result
- Our model finally achieves a CER of 3.58% and a SER of 7.43% on a Mandarin voice search task without an LM

Thanks! Q&A