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* Note that the “LAS” here Is refer to both the
works [1] and [2] (they are almost same)

* Listen: or Encoder, extracts higher-level

* The Encoder does not require to be pyramidal \
* Attend: weights the outputs of the Encoder \

* Spell: or Decoder, generates a prediction of
characters

[1] Chan, W, Jaitly, N., Le, Q., & Vinyals, O. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2016.
[2] Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. End-to-End Attention-based Large Vocabulary Speech Recognition. ICASSP 2016



* The encoder i1s normally
Implemented as a bidirectional
recurrent network

* Zero-pad the input feature into
a fixed-length

* The Listen module maps input
feature X (padded) Iinto a fixed-
length feature representation h

h = EncoderRNN (x)




The Attend and Spell module

* The Attend module weights the
encoded features h, resulting in a
context vector ¢

* The Spell module (or Decoder)
takes the attention context vector A A A
c and the previous prediction to
generate a prediction of the next
output Initial

state

c; = AttendtionContext(s;, h)
s; = DecodeRNN([y;-1, ¢i-1], Si-1) : % :

@

P(y;|x,v;i_1) = CharacterDistribution(c;, s;)
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Challenge of training LAS on Mandarin

* The attention model is difficult to converge on Mandarin %}

* Many thousands of characters

* Chinese characters give limited information on the sounds of the
spoken language
* |n some work, phonetic representation (pinyin) was introduced to help training

* We aim to train a Mandarin LAS using Chinese characters
directly (without pinyin’s help)

[1] Chan, W., & Lang, I. On online attention-based speech recognition and joint Mandarin character-pinyin training. Interspeech 2016




Train Mandarin LAS

* Tricks we tried but still not converge (CER > 95%)
* Adjust learning rate
* Adjust batch size
* L2 regularization
* Dropout
* Adam optimizer
* Pyramidal encoder U]

* Worked tricks for converging
* Character embedding
* Frame skipping

[1] Chan, W, Jaitly, N., Le, Q., & Vinyals, O. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2016.




* The character embedding layer
maps one-hot vectors into
embedded vectors

* dim of the one-hot vector (N): 6,922
* dim of the embedded vector (M): 1,024

* |t Is updated in the whole LAS model
training procedure

e The i-th row of W is the embedded
vector of the character with index i

* acts as a lookup-table

y=Wy
y: N (6,922)
W:M XN

$: M (1,024)
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* Utterance length of our dataset
* 900 frames after padding

* Inspired by low frame rate 1
* There Is no need to assume signal stationarity for RNN

* Studies shows that low-frame rate not only makes decoding faster, but
also improves the accuracy

* Borrowing the low frame rate idea, we do frame skipping in the
training of LAS encoder

[1] Pundak, G., & Sainath, T. Lower frame rate neural network acoustic models. INTERSPEECH 2016



Works on attention

* Compared two attention methods
* Content-based attention
* Location-based attention

* Attention smoothing




* For the i-th step to generates an output y; :

* The attention mechanism weights the feature representation h by the
welghts a; to generate a context feature

* a;is learned from h and the Decoder LSTM hidden state s;_4
* e; j: how well the inputs around position j and the output at position i

match
Ci = z ai,jhj

j=1
exp(e; ;)

j=1€xp(e; ;)

ai,j =

e;j = Score(s;-q, hj)

[1] Dzmitry Bahdana, Bahdanau, D., Cho, K., & Bengio, Y. Neural Machine Translation By Jointly Learning To Align and Translate. ICLR 2015




Content-based vs. Location-based

* Content-based attention 1l

e;j = w'tanh(Ws;_; + Vh; + b)

e Location-based attention 4l

ei,j = thanh(WSl-_l + Vh] + Ufl + b)

f; =Fxa;_4 Content-based 4,05 9.10

a;; = Softmax(e; ;) Location-based 3.82 8.17

[1] Dzmitry Bahdana, Bahdanau, D., Cho, K., & Bengio, Y. Neural Machine Translation By Jointly Learning To Align and Translate. ICLR 2015
[2] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. Attention-Based Models for Speech Recognition. NIPS 2015



Inspire of attention smoothing

* The a; distribution is typically very sharp, and thus it focuses on only a
few frames of h

* Long context information may be useful for the voice search task

* In the Softmax, the exponential function Sunbounded) could be
replaced by logistic sigmoid (bounded) U

a; i = explei) exponential
= X |
W YT exp(e; )
o(e;,;) 1 |28l
a; ;= ' ,where o(e;;) = logistic sigmoid
7 Xj=oCey)) W7 1+ exp(—ey) BZuE

[1] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. Attention-Based Models for Speech Recognition. NIPS 2015



Attention smoothing

* We simply replace Softmax by logistic
sigmold

location-based

* Although «; ; is no longer required to 11
sum to 1.0, a; ; do not depends on all ) 1
e; j though T

+ smoothing

_exp(e; ;) o 1 Location-based 3.82 8.17
% = 3T . YT T ¥ exp(—e; )
2]=1 exp(el,]) p L,J

* [t makes the attention computing faster

+ Attention smoothing 3.58 7.43



* We used a simple left-to-right beam search algorithm during
decoding 1

* Temperature [
* hyper-parameter in Softmax to smooth the distribution of characters
* increasing temperature make the distribution over characters more uniform

(0]
exp()

p(ilx,yi-1) = o
2.;exp(=)

* The temperature might be as another attention smoothing way ¥, but
we have not yet get a good result with it

[1] Sutskever, 1., Vinyals, O., & Le, Q. V. Sequence to Sequence Learning with Neural Networks. Nips 2014
[2] Chorowski, J., & Jaitly, N. Towards better decoding and language model integration in sequence to sequence models. Interspeech 2017
[3] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. Attention-Based Models for Speech Recognition. NIPS 2015



» The Spell module of the model is an implicit 8 P\ T\ T

character-level language model
* predict the next character according the history

* The model itself is insufficient to learn a i . -
complex language mode 1

* The transcripts of the acoustic training data
are limit Si — Viet Cim1r Sict)

* we have huge text data without audio Vi < S

[1] Chorowski, J., & Jaitly, N. Towards better decoding and language model integration in sequence to sequence models. Interspeech 2017



External language model

* Build a character-level external language model [

* Rewrite an existed word-level n-gram LM as WFST (G)
* Input/output label: word (a word consist of several Chinese characters)

* Use a WFST (L) to transduce character sequence to word

* Input label: character
* output label: word

* Compose L and G to get external character-level LM
T = min(det(L°G))

* Combines the internal and the external language model

C = —Z[logp(yilx, Vi1, Y1) +¥T]

l

[1] Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. . End-to-End Attention-based Large Vocabulary Speech Recognition. ICASSP 2016




Dataset

* 3,000 hours MITV dataset

* The longest utterance iIs about 10 secs
* Collected from the microphone on the MITV remote controller
* Includes 6,922 Chinese characters

* The test set includes 3000 utterances




Experiment setup

* Acoustic feature
* 80 Mel-scale filter-bank coefficients
* delta and delta-delta acceleration
* mean and variance normalization for each speaker

* Encoder
* 3-layer BLSTM
* 512 LSTM units per layer

* Decoder
* 1-layer LSTM
e 256 LSTM units
* 6,925 output labels



Experiment setup

* Hyper-parameters
* Initialized with the normalized initialization
* Gradient norm clipping to 1
* Gaussian weight noise
* L2 weight decay le-5
* ADAM as the optimization method
* Learning rate 1le-3 (1le-4 after it converged)
* Cross-entropy as the cost



* The effect of the decoding beam width for the content-based

attention and attention smoothing (7= 1)

Error rate/%
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Results

* The iImpact of the temperature for content-based attention and
attention smoothing (beam-size=30)

Error rate/%
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Results

* Results of our attention-based models with a beam size of 30,7=
2and y=0.1

- CER /% SER /¥

CTC 5.29 14.57

Content based attention 4.05 9.10
+ trigram LM 3.60 /.20
Location based attention 3.82 8.17
+ trigram LM 3.26 6.33
Attention smoothing 3.58 7.43

+ trigram LM 2.81 5.77



* With some tricks, Mandarin LAS could be trained without pinyin

* Embedding
* Frame skipping

* | ocation-based attention i1s more suitable in voice search task

* Attention smoothing further improves the accuracy, and reduces the
computational complexity

* An external LM can further improve the performance
* Decoding with a wider beam gives little-to-none benefit

* The temperature can smooth the distribution of characters and achieve a
better result

* Our model finally achieves a CER of 3.58% and a SER of 7.43% on a Mandarin
voice search task without an LM



Thanks!
Q&A



