Restoration of ultrasound images using spatially-variant kernel deconvolution

Mihai I. Florea* , Adrian Basarab[†], Denis Kouamé[†], Sergiy A. Vorobyov*

* Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland [†]IRIT UMR CNRS 5505, University of Toulouse, Toulouse, France

April 20, 2018

ICASSP 2018, Calgary, Canada

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background

Existing ultrasound image formation models

- [1,2] 2D convolution between the tissue reflectivity function (TRF) and a fixed system point-spread function (PSF)
- [3] spatially varying kernel convolution
 - spatially varying kernel
 - constant reference kernel modulated by the exponential of a fixed discrete generator
 - overly restrictive
- [4] arbitrary linear model with dense matrix representation
 - reconstruction limited to medium size images

 C. Dalitz, R. Pohle-Frohlich, and T. Michalk, "Point spread functions and deconvolution of ultrasonic images," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 62, no. 3, pp. 531–544, Mar. 2015.

[2] N. Zhao, A. Basarab, D. Kouamé, and J.-Y. Tourneret, "Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors," *IEEE Trans. Image Process.*, vol. 25, no. 8, pp. 3736–3750, 2016.

[3] O. V. Michailovich, "Non-stationary blind deconvolution of medical ultrasound scans," in Proc. SPIE, vol. 101391C, Mar. 2017.

[4] L. Roquette, M. M. J.-A. Simeoni, P. Hurley, and A. G. J. Besson, "On an analytical, spatially-varying, point-spread-function," in 2017 IEEE International Ultrasound Symposium (IUS), Sep. 2017, Washington D.C., USA.

Pulse-echo emission of focused waves

- the most widely used acquisition scheme in ultrasound imaging.
- sequential transmission of narrow focused beams
- each transmission centered at a lateral position
- laterally invariant kernels
- kernels become wider away from the focal depth
 - dynamic focusing in reception and time gain compensation cannot fully compensate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- · spatial resolution degradation away from focal depth
- need for an axially-variant kernel model

Axially-variant kernel ultrasound imaging model

 $\mathbf{y} = \mathbf{H}\mathbf{P}\mathbf{x} + \mathbf{n},$

- x tissue reflectivity function (TRF) to be recovered
- y observed radio-frequency (RF) image
- n independent identically distributed (i.i.d.) additive noise
 - we assume white Gaussian but not essential
- Operator $\mathbf{P} : \mathbb{R}^{m_t \times n_t} \to \mathbb{R}^{m_p \times n_p}$ pads the TRF with a boundary of width n_r and height m_r .
 - simple Kronecker structure
 - can be stored in memory as a sparse matrix
- Operator $\mathbf{H}: \mathbb{R}^{m_p \times n_p} \to \mathbb{R}^{m_t \times n_t}$ performs the axially-variant kernel convolution

Notation: discrete convolution

Valid convolution $\mathscr{C}_1(\mathbf{k})\mathbf{a} \stackrel{\text{def}}{=} \mathbf{k} *_1 \mathbf{a}$ Full convolution $\mathscr{C}_2(\mathbf{k})\mathbf{a} \stackrel{\text{def}}{=} \mathbf{k} *_2 \mathbf{a}$

Figure : Convolving test image **a** with a Gaussian kernel **k**. The inner rectangle represents valid convolution whereas the outer marks full convolution; Here, black and white correspond to values of 1 and 0, respectively. Kernel **k** is displayed after min-max normalization.

Notation: auxiliary operators

Figure : Applying the full-width window operator, followed by a full-width zero-padding operator on a test image a.

Each row $i_h \in \{1, ..., m_t\}$ of the output image is obtained by the valid convolution between the kernel of that row $\mathbf{k}(i_h)$ and the corresponding patch in the input image $\mathscr{W}_p(i_h, i_h + 2m_r)\mathbf{x}$.

$$\mathbf{H} = \sum_{i_h=1}^{m_t} \mathscr{Z}_t(i_h, i_h) \mathscr{C}_1(\mathbf{k}(i_h)) \mathscr{W}_p(i_h, i_h+2m_r).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Many deconvolution models use proximal splitting methods that optimize an objective containing a data fidelity term $\phi(\mathbf{HPx} \mathbf{y})$.
- These methods employ at every iteration the gradient of the data fidelity term

$$\nabla(\phi(\mathbf{H}\mathbf{P}\mathbf{x}-\mathbf{y})) = \mathbf{P}^{T}\mathbf{H}^{T}(\nabla\phi)(\mathbf{H}\mathbf{P}\mathbf{x}-\mathbf{y}).$$

• We need computationally efficient expressions of $\mathbf{P}^{\mathcal{T}}$ and $\mathbf{H}^{\mathcal{T}}$

Fundamental result on discrete convolution

Theorem

The adjoint of valid convolution is full convolution with the rotated kernel

$$(\mathscr{C}_1(\mathbf{k}))^T = \mathscr{C}_2(\mathscr{R}(\mathbf{k})).$$

Matrix-free expression for $\mathbf{H}^{\mathcal{T}}$

$$\mathbf{H}^{T} = \sum_{i_{h}=1}^{m_{t}} \mathscr{Z}_{p}(i_{h}, i_{h}+2m_{r}) \mathscr{C}_{2}(\mathscr{R}(\mathbf{k}(i_{h}))) \mathscr{W}_{t}(i_{h}, i_{h}).$$

 $\mathbf{P}^{\mathcal{T}}$ obtained using sparse matrix transposition

Ultrasound image deconvolution problem

Minimize the additive white Gaussian noise subject to elastic net regularization

$$\min_{\mathbf{x}\in\mathscr{D}_f}\frac{1}{2}\|\mathbf{H}\mathbf{P}\mathbf{x}-\mathbf{y}\|_2^2+\lambda_1\|\mathbf{x}\|_1+\frac{\lambda_2}{2}\|\mathbf{x}\|_2^2.$$
 (1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Objective F can be split into a quadratic function f and an elastic net regularizer Ψ

$$f(\mathbf{x}) = rac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2, \quad \Psi(\mathbf{x}) = \lambda_1 \|\mathbf{x}\|_1 + rac{\lambda_2}{2} \|\mathbf{x}\|_2^2,$$

where $\mathbf{A} \stackrel{\text{def}}{=} \mathbf{H}\mathbf{P}$.

- A is ill conditioned
- Ψ is not differentiable
- Lipschitz constant of $\nabla f(\mathbf{x})$ may be intractable to compute.

Optimization algorithm

The Accelerated Composite Gradient Method (ACGM)

- Applicable to all composite problems
- State-of-the-art convergence rate
 - For non-strongly convex objectives
 - Same asymptotic rate as FISTA of $O(1/k^2)$
 - Provably better constant
 - For strongly-convex objectives
 - Linear rate $O((1-\sqrt{q})^k)$
- Estimation of $\nabla f(\mathbf{x})$ Lipschitz constant
 - Automatic and dynamic at every iteration
 - · Lipschitz constant does not have to exist globally

• Twice as fast for objectives of type $\tilde{f}(\mathbf{A}\mathbf{x}) + \Psi(\mathbf{x})$

ACGM (unoptimized)

$$\begin{split} & | \text{nput:} \mathbf{x}_{0}, \lambda_{1}, \lambda_{2}, k_{max} \\ \mathbf{x}^{(-1)} &= \mathbf{x}^{(0)} \\ & \mathcal{L}^{(0)} &= || \mathbf{HP}_{\mathbf{x}}(0)|_{2}^{2}/||\mathbf{x}^{(0)}||_{2}^{2} \\ & q^{(0)} &= \frac{\lambda_{2}}{\mathcal{L}^{(0)} + \lambda_{2}} \\ & t^{(0)} &= 0 \\ & \text{for } k = 0, ..., k_{max} - 1 \text{ do} \\ & \alpha &:= 1 - q^{(k)}(t^{(k)})^{2} \\ & \mathcal{L}^{(k+1)} &:= r_{d}\mathcal{L}^{(k)} \\ & \text{loop} \\ & q^{(k+1)} &:= \frac{\lambda_{2}}{\mathcal{L}^{(k+1)} + \lambda_{2}} \\ & t^{(k+1)} &:= \frac{1}{2} \left(\alpha + \sqrt{\alpha^{2} + 4 \frac{\mathcal{L}^{(k+1)} + \lambda_{2}}{\mathcal{L}^{(k)} + \lambda_{2}}(t^{(k)})^{2}} \right) \\ & \beta &:= \frac{t^{(k)}}{t^{(k+1)}} \frac{1 - q^{(k+1)}t^{(k+1)}}{1 - q^{(k+1)}} \\ & \mathbf{z}^{(k+1)} &:= \mathbf{x}^{(k)} + \beta(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) \\ & \tau &:= 1/\mathcal{L}^{(k+1)} \\ & \mathbf{z}^{(k+1)} &:= \mathbf{x}^{(k)} + \beta(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) \\ & \tau &:= 1/\mathcal{L}^{(k+1)} \\ & \mathbf{G} &:= \mathbf{P}^{T} \mathbf{H}^{T} (\mathbf{HP}\mathbf{z}^{(k+1)} - \mathbf{y}) \\ & \mathbf{x}^{(k+1)} &:= \frac{1}{1 + \epsilon\lambda_{2}} \mathscr{F}_{\lambda_{1}}(\mathbf{z}^{(k+1)} - \tau \mathbf{G}) \\ & \text{ if } \|\mathbf{HP}\mathbf{x}^{(k+1)} - \mathbf{HP}\mathbf{z}^{(k+1)} \|_{2}^{2} \leq \mathcal{L}^{(k+1)} \|\mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)}\|_{2}^{2} \text{ then} \\ & \text{Break from loop} \\ & \text{else} \\ & \mathcal{L}^{(k+1)} &:= r_{u}\mathcal{L}^{(k+1)} \\ & \text{ end if } \\ & \text{ end loop} \\ & \text{end loop} \\ & \text{end for} \\ & \text{Output:} \mathbf{x}^{(k_{max})} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reducing computational intensity of ACGM

At every iteration k, ACGM computes

• auxiliary point $\mathbf{z}^{(k+1)}$ by iterate extrapolation

$$\mathbf{z}^{(k+1)} = \mathbf{x}^{(k)} + \beta(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$$

• quatities $Az^{(k+1)}$ and $Ax^{(k+1)}$ in $\nabla f(z^{(k+1)})$ and line-search

Linearity of gradient and extrapolation presents opportunity

cache all values

$$\mathbf{\tilde{x}}^{(i)} = \mathbf{Ax}^{(i)}, \ i \in \{0, ..., k\}$$

obtain without applying A the auxiliary point

$$\mathbf{\tilde{z}}^{(k+1)} \stackrel{\text{def}}{=} \mathbf{A}\mathbf{z}^{(k+1)} = \mathbf{\tilde{x}}^{(k)} + \beta(\mathbf{\tilde{x}}^{(k)} - \mathbf{\tilde{x}}^{(k-1)})$$

ACGM (optimized)

Input: \mathbf{x}_0 , λ_1 , λ_2 , k_{max}
$$\begin{split} & \tilde{\textbf{x}}^{(0)} := \textbf{HPx}^{(0)}, \\ & \textbf{x}^{(-1)} = \textbf{x}^{(0)}, \quad \tilde{\textbf{x}}^{(-1)} = \tilde{\textbf{x}}_0 \end{split}$$
 $L^{(0)} = \|\mathbf{\tilde{x}}^{(0)}\|_{2}^{2} / \|\mathbf{x}^{(0)}\|_{2}^{2}$ $q^{(0)} = \frac{\lambda_2}{\mu(0)+\lambda_1}$ $t^{(0)} = 0$ for $k = 0, ..., k_{max} - 1$ do $\alpha := 1 - q^{(k)} (t^{(k)})^2$ $L^{(k+1)} := r_d L^{(k)}$ loop $q^{(k+1)} := \frac{\lambda_2}{I(k+1) + \lambda_2}$ $t^{(k+1)} := \frac{1}{2} \left(\alpha + \sqrt{\alpha^2 + 4 \frac{L^{(k+1)} + \lambda_2}{L^{(k)} + \lambda_2}} (t^{(k)})^2 \right)$ $\beta := \frac{t^{(k)} - 1}{t^{(k+1)}} \frac{1 - q^{(k+1)} t^{(k+1)}}{1 - q^{(k+1)}}$ $\mathbf{z}^{(k+1)} := \mathbf{x}^{(k)} + \beta(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}), \quad \tilde{\mathbf{z}}^{(k+1)} := \tilde{\mathbf{x}}^{(k)} + \beta(\tilde{\mathbf{x}}^{(k)} - \tilde{\mathbf{x}}^{(k-1)})$ $\tau := 1/L^{(k+1)}$ $\mathbf{G} := \mathbf{P}^T \mathbf{H}^T (\mathbf{\tilde{z}}^{(k+1)} - \mathbf{v})$ $\mathbf{x}^{(k+1)} := \frac{1}{1+\tau\lambda_2} \mathscr{T}_{\tau\lambda_1} (\mathbf{z}^{(k+1)} - \tau \mathbf{G}), \quad \tilde{\mathbf{x}}^{(k+1)} := \mathbf{HP} \mathbf{x}^{(k+1)}$ if $\|\mathbf{\tilde{x}}^{(k+1)} - \mathbf{\tilde{z}}^{(k+1)}\|_2^2 \le L^{(k+1)} \|\mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)}\|_2^2$ then Break from loop else $L^{(k+1)} := r_u L^{(k+1)}$ end if end loop end for Output: $x^{(k_{max})}$

Simulation: forward model

Figure : (a) Ground truth (in B-mode) of the tissue reflectivity function (TRF); (b) Demodulated kernels $\mathbf{k}(i_h)$ for twenty depths at regularly spaced intervals of 2 mm; (c) Observed B-mode image simulated following the proposed axially-variant convolution model;

Simulation: reconstruction

Figure : (a) Observed B-mode image simulated following the proposed axially-variant convolution model; (b) Spatially-invariant deconvolution result (in B-mode) obtained with a fixed kernel equal to $\mathbf{k}(m_t/2)$; (c) Spatially-variant deconvolution result (in B-mode) using our axially varying kernel mode;

Simulation: convergence rate

Figure : Convergence rate of our method compared to FISTA.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Additional reading

- Mihai I. Florea and Sergiy A. Vorobyov, "An accelerated composite gradient method for large-scale composite objective problems", *arXiv preprint* arXiv:1612.02352 [math.OC], Dec. 2016, under review at IEEE Transactions on Signal Processing.
- Mihai I. Florea and Sergiy A. Vorobyov, "A generalized accelerated composite gradient method: uniting Nesterov's fast gradient method and FISTA", arXiv preprint arXiv:1705.10266 [math.OC], May. 2017, under review at Journal of Optimization Theory and Applications.
- Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov, "An axially-variant kernel imaging model for ultrasound image reconstruction", IEEE Signal Processing Letters (accepted), DOI: 10.1109/LSP.2018.2824764, 2018.
- Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov, "An axially-variant kernel imaging model applied to ultrasound image reconstruction", arXiv preprint arXiv:1801.08479 [eess.SP], Jan. 2018.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Backup slides

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Padding

- Allows us to reconstruct a TRF of the same size as the observed RF image
- Is an estimation of the surrounding tissues using information from the imaged TRF
- If this border information is not required, the reconstructed TRF can simply be cropped accordingly.
- Computationally efficient padding
 - Operator P is linear and separable along the dimensions of the image P = P_mP_n.
 - \mathbf{P}_m pads every column of the image independently by applying the 1D padding (linear) operator $\mathscr{P}(m_t, m_r)$.
 - The row component \mathbf{P}_n treats every row as a column vector, applies $\mathscr{P}(n_t, n_r)$ to it, and turns the result back into a row.

Computationally efficient padding

Figure : Common matrix forms of 1D padding operators $\mathscr{P}(10,3)$. Black denotes a value of 1 and white denotes 0.

Theorem

Padding operator ${\bf P}$ can be obtained programatically in the form of a sparse matrix as

$$\mathbf{P}=\mathscr{P}(n_t,n_r)\otimes\mathscr{P}(m_t,m_r).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation: discrete convolution (analytical expression)

$$\mathbf{k} \in \mathbb{R}^{m_k imes n_k}, \quad m_a \geq m_k, n_a \geq n_k, \quad \mathbf{a} \in \mathbb{R}^{m_a imes n_a}$$

Valid convolution

$$(\mathbf{k} *_{1} \mathbf{a})_{i,j} \stackrel{\text{def}}{=} \sum_{p=1}^{m_{k}} \sum_{q=1}^{n_{k}} \mathbf{k}_{p,q} \mathbf{a}_{i-p+m_{k},j-q+n_{k}},$$
$$i \in \{1, ..., m_{a} - m_{k} + 1\}, \ j \in \{1, ..., n_{a} - n_{k} + 1\},$$

Full convolution

$$(\mathbf{k} *_{2} \mathbf{a})_{i,j} \stackrel{\text{def}}{=} \sum_{p=p_{i}}^{\bar{p}_{i}} \sum_{q=q_{j}}^{\bar{q}_{j}} \mathbf{k}_{p,q} \mathbf{a}_{i-p+1,j-q+1},$$

$$i \in \{1, ..., m_{a} + n_{k} - 1\}, \ j \in \{1, ..., n_{a} + n_{k} - 1\},$$

$$p_{i} = \max\{1, i - m_{a} + 1\}, \quad \bar{p}_{i} = \min\{i, m_{k}\},$$

$$q_{j} = \max\{1, j - n_{a} + 1\}, \quad \bar{q}_{j} = \min\{j, n_{k}\}.$$

Notation: auxiliary operators (analytical expression)

Rotation operator

$$(\mathscr{R}(\mathbf{k}))_{i,j} \stackrel{\text{def}}{=} \mathbf{k}_{m_k-i+1,n_k-j+1},$$

 $i \in \{1,...,m_k\}, \quad j \in \{1,...,n_k\}.$

Exception index set

$$\mathscr{I}(a,b,c) \stackrel{\mathsf{def}}{=} \{1,...,c\} \setminus \{a,...,b\}, \quad 1 \leq a \leq b \leq c$$

Full-width window and zero padding operators

$$(\mathscr{W}_{s}(i_{1},i_{2})\mathbf{a})_{i,j} \stackrel{\text{def}}{=} \mathbf{a}_{i+i_{1},j}, \quad i \in \{0,...,i_{2}-i_{1}\}, \\ (\mathscr{Z}_{s}(i_{1},i_{2})\mathbf{a})_{i,j} \stackrel{\text{def}}{=} \begin{cases} \mathbf{a}_{i-i_{1},j}, & i \in \{i_{1},...,i_{2}\}, \\ 0, & i \in \mathscr{I}(i_{1},i_{2},m_{s}), \end{cases}$$

where $j \in \{1, ..., n_s\}$ and index $s \in \{t, p\}$ stands for image size quantities m_t , m_p , n_t , and n_p .