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Background

Existing ultrasound image formation models

• [1,2] 2D convolution between the tissue reflectivity function
(TRF) and a fixed system point-spread function (PSF)

• [3] spatially varying kernel convolution
• spatially varying kernel
• constant reference kernel modulated by the exponential of a

fixed discrete generator
• overly restrictive

• [4] arbitrary linear model with dense matrix representation
• reconstruction limited to medium size images
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Pulse-echo emission of focused waves

• the most widely used acquisition scheme in ultrasound
imaging.

• sequential transmission of narrow focused beams

• each transmission centered at a lateral position

• laterally invariant kernels

• kernels become wider away from the focal depth
• dynamic focusing in reception and time gain compensation

cannot fully compensate
• spatial resolution degradation away from focal depth
• need for an axially-variant kernel model



Axially-variant kernel ultrasound imaging model

y = HPx+n,

• x - tissue reflectivity function (TRF) to be recovered

• y - observed radio-frequency (RF) image

• n - independent identically distributed (i.i.d.) additive noise
• we assume white Gaussian but not essential

• Operator P : Rmt×nt →Rmp×np pads the TRF with a boundary
of width nr and height mr .

• simple Kronecker structure
• can be stored in memory as a sparse matrix

• Operator H : Rmp×np → Rmt×nt performs the axially-variant
kernel convolution



Notation: discrete convolution

Valid convolution C1(k)a
def
= k∗1 a

Full convolution C2(k)a
def
= k∗2 a
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Figure : Convolving test image a with a Gaussian kernel k. The inner
rectangle represents valid convolution whereas the outer marks full
convolution; Here, black and white correspond to values of 1 and 0,
respectively. Kernel k is displayed after min-max normalization.



Notation: auxiliary operators

Rotation operator (180 ◦) R(k)
Full-width window operator Ws(i1, i2)
Zero padding operators Zs(i1, i2)
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Figure : Applying the full-width window operator, followed by a full-width
zero-padding operator on a test image a.



Axially varying convolution

Each row ih ∈ {1, ...,mt} of the output image is obtained by the
valid convolution between the kernel of that row k(ih) and the
corresponding patch in the input image Wp(ih, ih + 2mr )x.

H =
mt

∑
ih=1

Zt(ih, ih)C1(k(ih))Wp(ih, ih + 2mr ).



Need for adjoint of model operator

• Many deconvolution models use proximal splitting methods
that optimize an objective containing a data fidelity term
φ(HPx−y).

• These methods employ at every iteration the gradient of the
data fidelity term

∇(φ(HPx−y)) = PTHT (∇φ)(HPx−y).

• We need computationally efficient expressions of PT and HT



Efficient adjoint of model operator

Fundamental result on discrete convolution

Theorem
The adjoint of valid convolution is full convolution with the rotated
kernel

(C1(k))T = C2(R(k)).

Matrix-free expression for HT

HT =
mt

∑
ih=1

Zp(ih, ih + 2mr )C2(R(k(ih)))Wt(ih, ih).

PT obtained using sparse matrix transposition



Ultrasound image deconvolution problem

Minimize the additive white Gaussian noise subject to elastic net
regularization

min
x∈Df

1

2
‖HPx−y‖2

2 + λ1‖x‖1 +
λ2

2
‖x‖2

2. (1)

Objective F can be split into a quadratic function f and an elastic
net regularizer Ψ

f (x) =
1

2
‖Ax−y‖2

2, Ψ(x) = λ1‖x‖1 +
λ2

2
‖x‖2

2,

where A
def
= HP.

• A is ill conditioned

• Ψ is not differentiable

• Lipschitz constant of ∇f (x) may be intractable to compute.



Optimization algorithm

The Accelerated Composite Gradient Method (ACGM)

• Applicable to all composite problems

• State-of-the-art convergence rate
• For non-strongly convex objectives

• Same asymptotic rate as FISTA of O(1/k2)
• Provably better constant

• For strongly-convex objectives
• Linear rate O((1−√q)k)

• Estimation of ∇f (x) Lipschitz constant
• Automatic and dynamic at every iteration
• Lipschitz constant does not have to exist globally

• Twice as fast for objectives of type f̃ (Ax) + Ψ(x)



ACGM (unoptimized)

Input: x0, λ1, λ2, kmax

x(−1) = x(0)

L(0) = ‖HPx(0)‖22/‖x
(0)‖22

q(0) =
λ2

L(0)+λ2

t(0) = 0
for k = 0, ...,kmax −1 do

α := 1−q(k)(t(k))2

L(k+1) := rdL
(k)

loop

q(k+1) :=
λ2

L(k+1)+λ2

t(k+1) := 1
2

(
α +

√
α2 + 4

L(k+1)+λ2
L(k)+λ2

(t(k))2

)
β := t(k)−1

t(k+1)
1−q(k+1)t(k+1)

1−q(k+1)

z(k+1) := x(k) + β(x(k)−x(k−1))

τ := 1/L(k+1)

G := PTHT (HPz(k+1)−y)

x(k+1) := 1
1+τλ2

Tτλ1
(z(k+1)− τG)

if ‖HPx(k+1)−HPz(k+1)‖22 ≤ L(k+1)‖x(k+1)−z(k+1)‖22 then
Break from loop

else
L(k+1) := ruL

(k+1)

end if
end loop

end for
Output: x(kmax )



Reducing computational intensity of ACGM

At every iteration k, ACGM computes

• auxiliary point z(k+1) by iterate extrapolation

z(k+1) = x(k) + β (x(k)−x(k−1))

• quatities Az(k+1) and Ax(k+1) in ∇f (z(k+1)) and line-search

Linearity of gradient and extrapolation presents opportunity

• cache all values

x̃(i) = Ax(i), i ∈ {0, ...,k}

• obtain without applying A the auxiliary point

z̃(k+1) def
= Az(k+1) = x̃(k) + β (x̃(k)− x̃(k−1))



ACGM (optimized)

Input: x0, λ1, λ2, kmax

x̃(0) := HPx(0),
x(−1) = x(0), x̃(−1) = x̃0

L(0) = ‖x̃(0)‖22/‖x
(0)‖22

q(0) =
λ2

L(0)+λ2

t(0) = 0
for k = 0, ...,kmax −1 do

α := 1−q(k)(t(k))2

L(k+1) := rdL
(k)

loop

q(k+1) :=
λ2

L(k+1)+λ2

t(k+1) := 1
2

(
α +

√
α2 + 4

L(k+1)+λ2
L(k)+λ2

(t(k))2

)
β := t(k)−1

t(k+1)
1−q(k+1)t(k+1)

1−q(k+1)

z(k+1) := x(k) + β(x(k)−x(k−1)), z̃(k+1) := x̃(k) + β(x̃(k)− x̃(k−1))

τ := 1/L(k+1)

G := PTHT (z̃(k+1)−y)

x(k+1) := 1
1+τλ2

Tτλ1
(z(k+1)− τG), x̃(k+1) := HPx(k+1)

if ‖x̃(k+1)− z̃(k+1)‖22 ≤ L(k+1)‖x(k+1)−z(k+1)‖22 then
Break from loop

else
L(k+1) := ruL

(k+1)

end if
end loop

end for
Output: x(kmax )



Simulation: forward model
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Figure : (a) Ground truth (in B-mode) of the tissue reflectivity function
(TRF); (b) Demodulated kernels k(ih) for twenty depths at regularly spaced
intervals of 2 mm; (c) Observed B-mode image simulated following the
proposed axially-variant convolution model;



Simulation: reconstruction
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Figure : (a) Observed B-mode image simulated following the proposed
axially-variant convolution model; (b) Spatially-invariant deconvolution result
(in B-mode) obtained with a fixed kernel equal to k(mt/2) ; (c)
Spatially-variant deconvolution result (in B-mode) using our axially varying
kernel mode;



Simulation: convergence rate
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Figure : Convergence rate of our method compared to FISTA.



Additional reading

• Mihai I. Florea and Sergiy A. Vorobyov, “An accelerated composite gradient
method for large-scale composite objective problems”, arXiv preprint
arXiv:1612.02352 [math.OC], Dec. 2016, under review at IEEE Transactions on
Signal Processing.

• Mihai I. Florea and Sergiy A. Vorobyov, “A generalized accelerated composite
gradient method: uniting Nesterov’s fast gradient method and FISTA”, arXiv
preprint arXiv:1705.10266 [math.OC], May. 2017, under review at Journal of
Optimization Theory and Applications.

• Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov, “An
axially-variant kernel imaging model for ultrasound image reconstruction”, IEEE
Signal Processing Letters (accepted), DOI: 10.1109/LSP.2018.2824764, 2018.

• Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov, “An
axially-variant kernel imaging model applied to ultrasound image
reconstruction”, arXiv preprint arXiv:1801.08479 [eess.SP], Jan. 2018.



Backup slides



Padding

• Allows us to reconstruct a TRF of the same size as the
observed RF image

• Is an estimation of the surrounding tissues using information
from the imaged TRF

• If this border information is not required, the reconstructed
TRF can simply be cropped accordingly.

Computationally efficient padding

• Operator P is linear and separable along the dimensions of the
image P = PmPn.

• Pm pads every column of the image independently by applying
the 1D padding (linear) operator P(mt ,mr ).

• The row component Pn treats every row as a column vector,
applies P(nt ,nr ) to it, and turns the result back into a row.



Computationally efficient padding

Zero Circular Replicate Symmetric

Figure : Common matrix forms of 1D padding operators P(10,3). Black
denotes a value of 1 and white denotes 0.

Theorem
Padding operator P can be obtained programatically in the form of
a sparse matrix as

P = P(nt ,nr )⊗P(mt ,mr ).



Notation: discrete convolution (analytical expression)

k ∈ Rmk×nk , ma ≥mk ,na ≥ nk , a ∈ Rma×na

Valid convolution

(k∗1 a)i ,j
def
=

mk

∑
p=1

nk

∑
q=1

kp,qai−p+mk ,j−q+nk ,

i ∈ {1, ...,ma−mk + 1}, j ∈ {1, ...,na−nk + 1},

Full convolution

(k∗2 a)i ,j
def
=

p̄i

∑
p=pi

q̄j

∑
q=qj

kp,qai−p+1,j−q+1,

i ∈ {1, ...,ma +nk −1}, j ∈ {1, ...,na +nk −1},
pi = max{1, i −ma + 1}, p̄i = min{i ,mk},
qj = max{1, j−na + 1}, q̄j = min{j ,nk}.



Notation: auxiliary operators (analytical expression)

Rotation operator

(R(k))i ,j
def
= kmk−i+1,nk−j+1,

i ∈ {1, ...,mk}, j ∈ {1, ...,nk}.

Exception index set

I (a,b,c)
def
= {1, ...,c}\{a, ...,b}, 1≤ a≤ b ≤ c

Full-width window and zero padding operators

(Ws(i1, i2)a)i ,j
def
= ai+i1,j , i ∈ {0, ..., i2− i1},

(Zs(i1, i2)a)i ,j
def
=

{
ai−i1,j , i ∈ {i1, ..., i2},

0, i ∈I (i1, i2,ms),

where j ∈ {1, ...,ns} and index s ∈ {t,p} stands for image size
quantities mt , mp, nt , and np.


