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Outline of Tutorial

Module A: Introduction Module B: Binaural 3D Audio for VR, AR/MR

* Definition of VR, AR/MR

*  Fundamentals in Human Listening and Spatial Audio
*  Brief Overview of Perceptual Evaluation

*  Why VR, AR/MR needs Immersive Spatial Audio

e Outline of Following Modules

Module C: Augmented/Mixed Reality 3D Audio

* Types of Augmented/Mixed Reality Audio

* Natural Listening in AR/MR: An Overview

* Signal Processing Techniques in NAL

* Hear Through of Real Sound

* Virtual Sound Augmented with Real Sound

* Acoustic Environment Estimation and Rendering
* Integrated System

* Conclusion

Module D: Summary and Future Trends

Overview of 3D Audio Reproduction

Binaural Rendering for VR/AR/MR

HRTF Individualization (including measurements)
Equalization

Movement Tracking

Environment Rendering

Integrated System

Conclusion

Summary of key Techniques

Spatial Audio Tools

Emerging Applications of VR/AR Audio
Challenges and Future Research Trends
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Module A

Introduction

Definition of VR, AR/MR

Fundamentals in Human Listening and Spatial Audio
Brief Overview of Perceptual Evaluation

Why VR, AR/MR needs Spatial Audio?

Outline of Following Modules

ok whe

Physics of Sound Propagation + Psychophysics of Auditory Perception



Definitions of VR, AR/MR

200 C

> Unread
Message

Virtual Reality (VR):
Immersive multimedia (or
computer-simulated reality)
to replicate an environment
that simulates a physical
presence in real or
imaginary world. Allow user
to interact in the VR world.

» Google cardboard
+ Samsung Gear VR
* Oculus Rift

Augmented Reality (AR):

In a real world environment
whose elements are
augmented (overlays) by
computer-generated (CG)
sensory input (sound, video,
data). However, the real-
world content and the CG
content are not respond/react
to each other.

* Google Glass

* Bose AR

* Microsoft
Hololens

—

Mixed Reality (MR):
Merging of real and virtual
worlds to produce new
environments (physical
and virtual objects co-exist
and interact in real time).

I }! I/I

* Magic Leap
e Meta 2
e HTC Vive Pro
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From PC Flat Screen to Full 360 VR Experience

Flat Screen Cinematic VR Full VR

»

. * Real-time rendering; but * Changing environment
* Pre-rendering . e . )
. 0DoF environment is still pre-rendered & interaction
e 3 DoF * 6DoF

Illustration by Santi, image credit: Freepik.com
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From Real Sound to Virtual Reality Audio

Real Virtual
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Natural Listening in AR/MR

See through field of vision :
30 to 90 degree (virtual)

Audio field of listening:
360 degree

Microsoft Hololens
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Playback device for current VR, AR/MR Headgear

e Without integrated headphones

Samsung VR Gear HTC Vive

e With integrated headphones and built-in speakers

Samsung HMD HTC Vive Delux Oculus Go Microsoft Hololens
Odyssey
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Wearable playback devices for VR, AR/MR

KY)

| |

Closed Back
Headphones

Good isolation &
bass

Block off from
environment

Opened Back
Headphones

Less isolation &
sound leakage
Good
environmental
awareness
spacious

In-Ear Monitors

Excellent isolation
and frequency
responses

Block off
environmental
noise

Intra-concha / supra
aural Earphones

Poor isolation/
response
variances
Some
environmental
awareness
Lightweight

Built-in Speaker

Poor isolation &
bass
Leakage

* Which type of playback devices should be used for VR, AR/MR ?

* VR requires isolation of the real sound to get immersed in virtual sound.
* AR/MR requires Transparent Listening to blend virtual with real sound.
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A.2 Overview of Human Auditory Model

e How do we hear?

e Binaural cues for localization of single source
e Cone of confusion and head movements

e Spectral cues

e HRTF definition
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How do we hear?

Helix

\Antlhelix

Congha

Antitragus

Sound waves air vibrates

and moves towards the ear
u I

Image Source:

Ear Canal

Auditory Nerve
carriers electrical
messages to

the brain

Cochlea the

bones’ movement
transferred to fluid
which moves hairs

Inner Ear Bones
the vibrating
eardrum makes
the inner ear
bones move
like levers

Ear Drum the vibrating
air causes the eardrum
to vibrate

Lobule

Primary Auditory Cues:

http://www.soundproofingcompany.com/soundproo .
fing101/what-is-sound/ .

Interaural Level Difference

Interaural Time Difference

Monoaural Spectral Cues (pinna)

Torso and Body reflection & diffraction
Environmental (Direct/Reverberation Ratio)
Head Motion

Familiarity with sound source

A.11 /30
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Binaural cues for localization of single source

e Compare sound received at two ears
« Interaural Level Differences (ILD)

 Effective for high frequencies
above 1.5 kHz

* Head size ("22cm) > wavelength

INTERAURAL LEVEL DIFFERENCE (db)

020 100 1K 2K 5K

* Smallest detectable ILD = 0.5 dB FREQUENCY ()
« Interaural Time Differences (ITD) /\/\\/\/&
* Effective for low frequencies AL >
below 1.5 kHz AN
* Rayleigh’s duplex theory of o
ILD and ITD — b

* Smallest detectable ITD = 13 us
Pictures modified from [W. M. Hartmann, 1999
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Precedence (Law of 15t Wavefront) Effect

* First wavefront determines localization

 Used in sound reinforcement system;

 But when played back form headphones, the effect is
very different.

.

qu"u '"u’b%’,
AR RAAARRAAAAAARkn,
T T T VT v u T v
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Equations for Interaural time difference (ITD)

[Minnaar, 2000]

S/No. [ Technique ITD formula
Name Equations Parameter definition
1. Woodworth Original : ITD =2 (sinf 4+ 6),0 < 0 < /2 a- radius of sphere
Formula and extensions . ‘a . ) ) c-speed of sound
(Minnaar, 2000] Extension 1:ITD = — [arcsin(cos¢gsind) + cospsinb] 6- azimuth angle
Extension 2 :ITD = %(sin@ + 6)cos¢ ¢- elevation angle
2. Interaural Phase Delay Ay Y, —Yr Y., Yp is the phase of sound
[Blauert, 1997; ITD,(6,f) = 2nf B 2nf pressure for left ear and right
Xie, 2013] ear respectively and is the
frequency at which ITD is
calculated
3. Interaural Cross [p.(8,Dpr(6,t + T)dt p(6,)pr(6,t) measured
correlation (IACC) and IACC(6,1) = HRIR for left and right ear
t .
related methods z ta o 0 incident angle, t;=0
[Katz, 2014] \/_ft p. (6, t)dt ftl pr(6,0)dt t, = max of the lengths of
’ 1
0,t) and 0,t
Method 1: Max IACC pL.(8, ) and pr(6,
ITD(0) = argmaxIACC(6, 1),
|T| < 1ms,
Method 2: Centroid of IACC ITD(8) = C,(IACC(8,7))
4, Group delay ITD = IGD ( T4(0) et /rigne-group delay for
= =abs(z,(0),_ -z, (0). ) g - left/rig
Methods 0 g ( )'eﬁ g ( )”ght excess phase component of

HRTFs for left/right channel
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Equation for Interaural Level Difference (ILD)

e The equation for ILD is given by:

PR(Tf 91 ¢'f)
PL(TI 9! ¢'f)

P, (r,0,¢,f), Pr(r, 0,0, f) are the freq-domain sound-pressures at left and right ears

ILD(r,6,¢, f) = 20log|

e If head and two ears are approximated by rigid sphere and two
opposite points on spherical surface, the pressures can be
calculated as scattering solutions to rigid head.

ILD /dB
© I
=
<
—
/
/

INZ22\/BN
W/

0 30 60 90 120 150 180
Azimuth (6) / degree

[Xie, 2013]
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Cone of confusion and dynamic cues

e Similar ITD and ILD due to:
« Cone of confusion

Sources A & B; Sources C& D
have identical ITD and ILD

« Media Plane (extreme case of

: B
cone of confusion)

How can we tell if the sound is in front or behind?

(a) Sound source Sound source

Front

¢ We need another sound localization cue!

Before head rotation After head rotation

¢ Head rotation as a dynamic cue can help resolve this
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Modeling of Sound Scattering (Human body & ears)

 Sound interacts with torso, head, external ears and arrives at

the two ear canals: Scattering Effect
* Provide filtering cues for localization

=0.1-2 kHz

torso —

=08 -12kHz [C4>cm)

shoulder
reflection

=05 —-1.6 kHz
head diffrac-
tion and —
reflection

=2 —14 kHz

pinnae, (~4 cm)
cavum —

conchae

reflection

@ C

| I T 10 T
- o Ear Resonance %
20}

tic Gain Components —-d
- -
o [=] (5.3
TTTTTTT T

(=]

Acous

-55 Ear resonance =17 dB at 2700 Hz V\E

']g.;J L i e L
Hz (200-10,000)
=3 kHz7 =3—18 (7) kHz
cavum conchae ear canal and
dominant e | 2@rdrum
resonance impedance
NONDIRECTIONAL

Plot from

http://hearinghealthmatters.org/waynesworld/20

DIRECTIONAL

14/human-ear-canal-viii/#refmark-1
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Head-Related Transfer Function (HRTF)

* HRTFs encode filter characteristics for a sound arriving from a
specific direction.

* Many high-frequency details due to pinna scattering.

* How we measure or generate HRTF?

H RTF6O above

g o
P

32
g

g 40
g.

01 02 03 04 05 06 07 08 09 1
Normalized Freq

-60
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@
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o
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s
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Normalized Frequency (x = rad/sample)

Ipsilateral HRTF nearer O

to source (shown above)
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Animation of HRIR/HRTF: Database from CIPIC

HRIR Horizontal Plane Azm = 0 HRIR Median Plane Ele = -45
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Individual Sound Filtering (Earprint)

Variation in Pinna morphology

Pinna of human subjects taken from the CIPIC database
* Human pinna is found to be as idiosyncratic as the fingerprint
* Scattering wave around ears are different.

* HRTFs are highly individual and differs substantially from one
subject to the other.

* For perfect 3D audio playback, individualized recordings/HRTFs
and individualized headphone equalization are required
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Distance Localization Cue

* Loudness
e Familiar sound sources
* Moving sound sources
* Initial Time Delay
e Ratio of Direct and Reverberant energy
 Motion Parallax (near field)
e |ILD (near field)
* High Frequency Damping (far field) ﬁ
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Reverberation

Spatialization (Anechoic) Reverberation (Ambience)
only solves direct sound Provides indirect audio cues
propagation
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Design of Spatial Audio Rendering System

e Spatial audio rendering is concerned with the linking of
physics and auditory perceptual effects.

e Not to overly rely on complex mathematical tools; just a
tool for analysis.

e A highly accurate design of spatial audio processing
system may not be required for plausible perceptual
performance.

e Allow some degrees of mathematical errors and
measurement errors.
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A.3 Perceptual Quality Evaluation

e Aim and overall process flow for evaluation of sound
quality

e Key aspects of perceptual quality assessment
e Key standards and protocols
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Aims and process flow

 Aim of listening tests is to determine whether the recorded or
reproduced sound recreate the similar “acoustic sensation” for
the listener as the original event

Reproduction Room Application 1
,f"' - _“ﬂ"‘ 5,
4 "
: li
- —1 O—:—— Perception Hm EQL:E”?
Recording Room Audio | &. , valuation
O N e
Coding || -
. Application 2
i Quality
—»6 a—b =
Perception Evaluation

Picture from [Schoeffler et al.,2015]

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module A 16t Apr. 2018 A.25 /30



Key aspects for perceptual quality assessment

e Experimental design

e Selection of listening panel

e Test methods

e Attributes

e Program material

e Reproduction devices

e Listening conditions

e Statistical representation of data
e Presentation of results

[Schoeffler et al.,2015]
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Key Standards/tests for evaluation of 3D sound perception

ITU-R BS.1116-3

ITU-R BS.1534
(MUSHRA Test)

ITU-R WP6C
(under progress)

ABX Test

Methods for subjective
assessment of small
impairments

Method of subjective
assessment of intermediate
quality level of audio systems

Multi stimuli method for
quality evaluation

(force-choice testing to
detect any perceptual
difference between two
stimuli in double-blind trials)

Double blind triple stimuli with hidden reference
Uses a test form with an open given external
reference and a five point scale.

The test is designed to emphasize small differences
between test items and reference.

Double blind MUIti-Stimuli test with Hidden
Reference and Anchor (MUSHRA) with continuous
scale

Hundred point scale with five verbal descriptor
labels used.

Will have no open reference, to make it applicable
to all the test cases where a reference is not
defined.

Planned to include additional attributes and an
ideal profiling method, which aims at finding out
how close products are.

Subject is presented with two category of known
stimuli (A and B) and ask to identify category of
unknown stimuli (X)

If X cannot be identified with a low p-value, then no
perceptual difference between A and B

[Bech and Zacharov, 2007]
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Experiencing VR, AR/MR with 360° SPATIAL AUDIO

Spatial Audio

The trumpet can be heard
on front right.

Enhance VR, AR/MR experience
Work best with visual
reinforcement

Needs real-time rendering of
dynamic audio cues (head
rotation and sound object)
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Spatial Audio Technologies for Immersive VR/AR/MR

Module B

topics

4 PO
.,.;' i

Spatial Audio Formats

* Object, Ambisonics
* Parametric processing

~

Individualized Binaural
Rendering
e |ndividualized HRTFs

~

e Equalization

WS Gan, JJ He, R Ranjan, R Gupta

~

Dynamic Binaural Synthesis
* Head tracking

\_* Position tracking

~

Environment °

4

\_ Estimation

Depth camera )

Reverberation | Module C
fingerprint topics
Machine

learning

4

Environment
O Rendering

* Wave based

 Geometrical
based

e Perceptual
based

Sound Fusion
0

Virtual & Physical.

\
* Adaptive
equalization
Hear-through
processing

4

Natural and augmented listening for VR,AR/MR: Module A
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Module B

Binaural 3D audio for VR, AR/MR

1.
2.
3.
4,
5.
6.
7.
8.

Overview of 3D Audio Reproduction

Binaural Rendering for VR/AR/MR

HRTF Individualization (including measurements)
Equalization

Movement Tracking

Environment Rendering

Integrated System

Conclusion



B.1 Source-medium-receiver of spatial audio reproduction

Immersive Audio
‘ “being there”

Audio content

Playback system

. E \ 4
0

Loudspeakers

Receiver

Headphones

Movements
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MPEG-H 3D audio standard (2015)

MPEG-H

bitstream
ﬁ

USAC-
3D
Decoder

Loudspeaker layout

Converted
Channels Channels
: Format s
Converter
Y .
Rendered
Objects: i Objects
J s Object J S
: | Renderer
A
Rendered
HOA : HOA
g HOA >
: | Renderer
A

Mixer

Channels

|

Binaural
Renderer

A

HRIR. BRIR

16t Apr. 2018

Loudspeaker

feeds

g Headphone

feeds

[Herre, 2013]
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Channel-based audio

¢ Audio sources are mixed for target setup/channels, like stereo, 5.1, 7.1,
9.1, 22.2, etc.

¢ Channels are stored/transmitted
¢ Channels are reproduced by target setup
e Pros: Legacy content (music/movies), direct playback

e Cons: not flexible to playback system mismatch, sub-optimal performance

Reproduction
Recording

%

__-[-.!-___—————_————__

i Production
Vo) lox
b -\‘\ ‘ ;\'—/ :
I
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Object-based audio

e Audio object = audio source + metadata

e Audio object is stored/transmitted

e Audio object is rendered into mix by receiver to actual setup at playback time
e Agnostic to playback configuration, compromise-free object rendering

e Personalization

e Industrial support: MPEG-H, Dolby ATMOS, DTS:X, Auro-3D

Reproduction

[
Recording ;
i 1
’ - I
: C4v" I
B a .
: I
H (%)
. 8+ g
P8 13 1G5
18 % e
H =
: .8 L2
a o |
+—
5 |
S 1
S
= I Setup
I
I
|
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Scene-based audio: ambisonics basics

> Assume a sound field = superposition of plane waves
» Recording/Encoding: sound sources/objects
» Reproduction/decoding: loudspeakers (to find the weights)

> Any spatial function (e.g., plane wave) on the unit-sphere
= infinite sum of spherical harmonics (SH)
= finite sum of SH with N orders

9 ¢) Z z fanm(e ®)

m=—-n

eIevatlon
weight
azimuth g
order .
spherical
degree :
harmonics

[Rafaely, 2015]
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Spherical harmonics

0
YO

Im {Y;‘} YO Re {¥!}

i {v72} i {7} v9 Re{v1} Re {73)

Othordern=0

1stordern=1
NG E \/g% sin Qe

2nd order n =2
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Spherical harmonic weights

> Spherical harmonic weights

27

_ ” (6,4)[ Y (6.9) ] sinododg

- what the amblsonlcs microphone records directly or
indirectly

> Rotation in spherical harmonic domain

8nm = anm
pd ~~
After rotation Before rotation
[go,o» I9i1,-1091,00 91,10 -+ gN,N] [fo,o: f1,—1: f1,0: f1,1» RNy fN,N]

(N+1)? X (N+1)? block diagonal
matrix related to the rotation angles

—3Sound field does not need to be recorded again!
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Ambisonic decoding/reproduction

Loudspeaker Ambisonic For any layouts For regular layouts
signals signals T T
A t

Cs(t) = A(t) - s(¢) = (cTc)_1 cTA(t) = ;CTA(t)

Encoding spherical harmonic matrix
related to loudspeaker positions

> The above physical decoding technique

assumes coherent sum of loudspeaker signals and reproduce original
velocity

works well only for low frequency with a small sweet spot

> Other techniques include psychoacoustic decoding

assumes incoherent sum of the loudspeaker signals and reproduces
the original energy

Works better at higher frequency [Arteaga, 2015]
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Ambisonics: B-format

e Recording/encoding ¢ Reproduction/decoding to
"!}fll" i‘j omnidirectionalW=%gs{%} regUIar IayOUt _ _
,\tk x-directional X =%gsk [cos ¢, cos b, ] 1 %
* y-directional Y:%gsk[sin% cos 6, | Loudspeaker signal pj:j[w XY 2] ::22822
* z-directional Zziisk[sinek] | sing; |
e Rotation (e.g., azimuth rotation by 0)
Y
W W] 1 0 0 0] 100 0] W W
X' X 0 cosd -singd O 0 0 -1 0 X ,
, =R R= : Rl)_o0-= X = -
Y Y 0 sind cosé O 001 0 0| so—y X
1Z'] Lz 0 0 0 1] 00 0 1 Ty
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An overview and comparison

Audio content format

Channel-based

Object-based

Scene-based

Advantages

Easy to set up; no
processing for the
matched playback
configurations

Flexible for arbitrary
playback
configuration;
accurate sound
image;

enable interactivity

Flexible for arbitrary
playback
configuration; full 3D
sound image

Disadvantages

Difficult to fit in
different playback
configurations; 3D

High transmission or
storage; high
computation

Require a large
number of speakers
placed on the surface

sound image limited  complexity of a sphere
. E i i .
Status Legacy audio format, fc::renragt"Lgs::?rl\o Adopted in
still dominant . VR/AR/MR
movies/games
Stereo and Amplitude panning
Desired reproduction multichannel WFS, binaural, Ambisonics

system

surround sound
system

transaural rendering
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Parametric spatial audio processing (PSAP)

array setup
information Q D Q
I

recording | output
signals a Iy

signhals
&

I
|
target setup n

information

a) Non-parametric: Direct approaches.
(a) p PP oo

recording transformed output
signals spatial signals _| transmission inverse transform/ signals ~¢3 G
transform " | manipulation decoding
. '
! :
array setup

e _ larget' setup
information information

(b) Non-parametric: Transform-based approaches with separated encoding/decoding.

reproduction setup

information 19 (W g

recording ¥ output

signals prpSp—— spatial signals O3 g Ch aracte riStiCS:
e Compressic’“ m * Flexible

h 4 I
I
I

(R e m—. * Effective
 Efficient

recordiﬁg setup
information

v

[Pulkki, 2018]

(c) Parametric approaches.
Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.12 /100
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Parametric sound field/scene models

Audio content Directional | Diffuse .
Parameters Related techniques
type sound sound

One/ Spatial audio scene coding
ultile Yes ICTD, ICLD (SASC) / Primary-ambient
P extraction (PAE)
SHEMIT R Multiple No AZImUt.h' Blind source separation (BSS)
(elevation)
Multiple  No ICTD, ICLD, ICC MIFZGSTERE] el Ceeln:
(SAC)

: . Azimuth, elevation, MPEG Spatial audio object
Object-based Multiple No (distance) coding (SAOC)
Scene-based Multiple Yes Azimuth, elevation, | Directional audio coding
(ambisonics) P Diffuseness (DirAC)

: Azimuth,
Scene-based MUltlple No (elevation) BSS
(mic array) . : : e
Multiple Yes Azimuth, elevation Spatial filtering
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PSAP example: Directional audio coding (DirAC)

o Loudspeaker
: o Direction setup
) > Direction information
MlcmphoPe — | and Diffuseness
channels in Diffuseness
—>| estimation J, Out
Time- 5| VBAP for >
frequency 5| point-like
analysis . sources >
N
> — Streal.n S .
3| Virtual 3 separation S Decorlzelatlon 5
5 cardioid : : for diffuse
microphone . LN reproduction
— —

!

Loudspeaker setup
information

[Pulkki, 2007]

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.14 /100



PSAP example: sound scene decomposition

Aim: to obtain useful information about the original sound scene from
given mixtures, and facilitate natural sound rendering.

“Sum of sources” “Sum of primary and ambient components”

Blind source separation Primary ambient extraction

[Sunder, 2015]

https://www.vg247.com/2014/04/10/wargame-red-dragon-screenshots-show-off-warships-in-the-rts/
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Sound scene decomposition: BSS

Objective:

to extract the K
sources from M
mixtures

“Sum of sources”

Mixtures = function (gain, source, time difference, model error)

NV
X (N)

:ngksk(n—rmk)+em(n), ‘v’me{l,Z,...,I\/I}
=
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Sound scene decomposition: BSS

Objective:
to extract the K
sources from M
mixtures

Typical techniques

M = K ICA o 124
Sum of sources
ICA with PCA,
M > K
Least-squares
M> 2 ICA with sparse solutions ICA :Independent component analysis
PCA : Principal component analysis
M<K M=2 Time-frequency masking NMF : Non-negative matrix factorization;
CASA: Computational auditory scene analysis
M =1 NMF, CASA P Y Y
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Sound scene decomposition: PAE

Objective:
to extract the primary and
ambient components from
M mixtures

“Sum of primary and ambient components”

Mixtures = primary component + ambient component

\Xm (n) - ém (n)+ am/(n)
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Sound scene decomposition: PAE

Objective:
to extract the primary and
ambient components from
M (M = 2, stereo) mixtures

—

“Sum of primary and ambient components”

Basic Channel-wise Time frequency masking
model Combine channels Linear estimation (PCA, LS), Ambient spectrum estimation

Time/phase shifting, Classification,

Complex model Sub-band, Pairing up two channels, etc.
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PAE: Linear estimation for stereo signals

Po (n) Wooo  Weo 1
pl(n) . Woi0 Wept || XN
VAN 4 A B
& & a (n) Waoo  Waos X1(n)
@9/ Min %'L °
. <, A
%@’Q/ error “br d (n) | Wato Wai1
) _ _
4
Min . Min
@ distortion | I_:lnea‘r | leakage @
estimation
l based PAE I Objectives and relationships of four linear
4 Vi estimation based PAE approaches.
Min / .
correlation /" & * Blue solid lines represent the
/ @?‘b relationships in the primary component;
Vi * Green dotted lines represent the
4 relationships in the ambient component.
. * MLLS: minimum leakage LS
Scaling factor ¢, o ) i

e MDLS: minimum distortion LS

[He, 2014]
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PAE: an example from least-squares

{a) Mixture 1 (b) Mixture 2 (c) Scatter plot for mixture signals
‘ s —— B R 0.02 : : ' : ~ k
o !_4
BE B ¥ 0.01 -
c & s E -
g - = : g 4 = “;('& 0 2
= g ;s
2 2 = e 0.0 .
e = = ,
! -0.02 ; : : : ; !
0 05 1 15 2 0 05 1 15 2 -0.015 -0.01 -0.005 0 0oos 001 0015
Frequency(Hz) 10 Frequency(Hz) T X, (t)
(d) True primary component (e) Extracted primary component {f) Scatter plot for primany signals
Po— - :,.- o : 3o 002 ' ' ' ' 1 -
g = B 0.01 g
T = z B
T 1 T 4 = =
D 48 @ 4 = -
E =z EE = 0
= = B
2} 2f_—' -0.01 -
e - s —— ..
0 0.5 1 15 2 0 0.5 1 15 2 TO05 001 0005 0 0005 001 0015
Frequency(Hz) 0 Frequency(Hz) o p, )
{g) True ambient component (h) Extracted ambient component - 10'3 (i) Scatter plot for ambient signals
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B.2 Binaural rendering for VR/AR/MR

e VR/AR/MR audio aims to deliver an interactive immersive
listening experience in a virtual/augmented world

Cinematic / 360 Synthetic / Full
(Video/Streaming) (Game/App)

Virtual Position Static Dynamic
Real position Static Dynamic
Tracking Head orientation Head / + body
Source directions Dynamic Dynamic
Source distances Static Dynamic
Reverberation Static Dynamic
Diffraction Static Dynamic
Doppler effect No Yes
Deliver Coded content Coded content + rendering engine
Common format Scene (Ambisonics) Object (better performance), Scene
Real sound Presented naturally in AR/MR

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.22 /100



An illustration

Natural Cinematic / 360 Synthetic / Full

o
e

.

Key Technology Ambisonics Object-based audio

Direction rendering HRTF HRTF

3D modeling,

Distance renderin Amplitude adjustment i )
' ne pitu - Amplitude adjustment

3D modeling,

R : i
ST b2 Early reflection modeling

Interaction Ambisonic rotation 3D modeling, Low pass filtering

Performance & Complexity Medium High (no. of sources)

http://superpowered.com/3d-spatialized-audio-virtual-realit
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http://superpowered.com/3d-spatialized-audio-virtual-reality

Other VR/AR/MR audio effects

e Area sources (source with width)
e Source with directivity

e Sound transport time

e Non-spatialized audio

e Audio effects

https://developer.oculus.com/documentation/audiosdk/latest/concepts/audio-intro-mixing/
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Binaural rendering is the soul of VR/AR/MR audio

Binaural rendering recreates all the listening cues for
both ears using headphones

> Direction rendering
> Distance rendering
> Environment rendering

- >

> Interaction

VR audio \ Automoblle
|
Core: — Core: e
Binaural rendering Engine

[Image courtesy: GAUDIO, 2016]
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Challenges and solutions

Headphone listening Signal processing Natural listening

Source

Medium

Receiver

[Begault, 2000]
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Binaural rendering for 3 types of formats

» Channel based
> Object based
» Scene based

« Ambisonics
« Other microphone array recording
« Binaural recording: not suitable for VR/AR/MR
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Binaural rendering of channel-based audio

M

&

Original scene Perceived scene
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Binaural rendering of object-based audio

Original scene Perceived scene
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Binaural rendering of scene-based audio

Original scene Perceived scene
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Google Omnitone

Spatial
media

4-channel audio (‘45, 35) (45’ 35)

vz n (AmbiX format)

Orientation
VR Headset sensor data

or = Rotator ) ,
(-135, 35) (135, 35)
Rotated ambisonic

streams for each
virtual speaker 4

Smartphone

8 Virtual Speakers

)
/
/
/
/
/
/

(45, -35)

Binaurally-
rendered stereo
streams

Stereo Out

v

E]F 2-channel audio (-135, -35) (135, -35)

Headphones
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Required orders for ambisonics based binaural rendering

Ambisonic order | Average localization
error

1st 24°
3rd 17°
5th 15°

e Using generic HRTFs with head tracking,
performance might differ with
individualized HRTFs

e Significant improvement found by
increasing from 1%t order to 3™ order.

=

W
W\
e

\
\\

\ 3" A
\ X
20\

>

W
AN
NN

e Little advantage found in 5t order over 3™
order.
[Thresh, 2017]
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Audio format transformation

o © e &
O Object , . ¢ p, 4
o) Recording /Scene | /
O Encoding
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B.3 HRTF Individualization

T T
| -~
| H e o =
} PI n n a = T '-"'.E":’-l-‘“".&-m : g _'r,.': -
| "\/:. \y

Sound at

eardrum with

[ o

Sound ) | ™ individual

Source \/ / pinna

/ 4 | features

_ 3

i u
- |
2
””””” Natural %
Filter 2|

10 10’ 10
Frequency (Hz)

(c)
Variation of HRTFs (ldiosyncratic)

[Xu, 2007; Carlile, 2014]
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Highly individualized ear response

a Frequency (kHz)
| 4
N\

a /
s o
c Q
=l =
= D
=
@
o

<
s o
=4 =
z o
= o
2
®
=
<@
[SW)

| Transfer (dB)
15

[Hoffman, 1998]
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Overview of HRTF individualization techniques

To obtain individualized HRTF/perception

(J Acoustical measurements
* Stop-and-go static measurements

* Fast dynamic measurements

J Anthropometric measurements

. Numeric simulation based on 3D models

. Data-driven approaches based on features
d Listening and evaluation
. Tuning HRTF set based on perception

. Training to adapt to new HRTFs

(Jd Multi-driver headphone sound projection
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HRTF measurement techniques with human subjects

Representative Microphone  Number of Loudspeaker Subject Subject (head) Subject Excitation signal  Performance Approximate
references type loudspeaker movement posture movement tracking evaluation duration*
Mgller, 1995 Binaural 1-N Discrete positions across ~ Siton a Not allowed No Sweep or Reference 1+ hours
Algazi, 2001 azimuth and elevation normal chair maximum length  technique
sequence (MLS)
Carpentier, 2014  Binaural 1 Discrete positions across ~ Siton a Not allowed Yes Sweep No 1+ hours
elevation chair on the
turntable
Majdak, 2007 Binaural 22 No Sitona Not allowed Yes Multiple Objective 30 minutes
chair on the exponential
turntable sweep method
(MESM)
Bilinski, 2014 Binaural 16 Discrete positions across ~ Siton a Not allowed and Yes MESM No 30 minutes
elevation normal chair  fixed
mechanically
Bomhardt, 2017 Binaural 64 No Stand on a Not allowed and No MESM No 10 minutes
turntable fixed
mechanically
Pollow, 2012 Binaural 40 No Stand on a Not allowed and No MESM Subjective 10 minutes
turntable fixed
mechanically
Zotkin, 2006 32 channels 1 Across the two ears Sitona Not allowed No Sweep Objective 30 minutes
normal chair
Fukudome, 2007  Binaural 1 Move/rotate vertically Sitona Not allowed No MLS Objective 1+ hours
chair on the
turntable
Pulkki, 2010 Binaural 1 Discrete positions across ~ Siton a Not allowed No Sweep Objective 1+ hours
elevation, and continuous  normal chair
rotation across azimuth
Enzner, 2008 Binaural 1 Discrete positions across ~ Siton a Not allowed No White noise or Objective 30 minutes
elevation chair on the perfect sweep
turntable
Enzner, 2009 Binaural 4 Few discrete positions Sitona Not allowed No White noise Objective 10 minutes
across azimuth/ elevation  chair on the
turntable
He, 2016 Binaural 1 Few discrete positions Sitona Free movement Yes White noise, or Objective 30 minutes
Li, 2017 across azimuth/ elevation  rotatable across azimuth/ perfect sweep
chair elevation
Reijniers, 2017 Binaural 1 Few discrete positions Sitona Free movement Yes Sweep Objective and 30 minutes
across azimuth normal chair  across azimuth/ subjective
elevation
He, 2018 Binaural 1 Few discrete positions Sitona Free movement Yes White noise Objective and 30 minutes
across azimuth/ elevation  rotatable across azimuth/ subjective
chair elevation
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Existing HRTF acquisition techniques

« Discrete stop-and-go HRTF acquisition

v" Fixed measurement setups (Multiple loudspeakers play
one-by-one)

d Tedious and time consuming especially for human
subjects.

Ji
|
/ toy
Sy
L lv‘“
\ 4
i

L T 3 2
Tohuku univ. Japan
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Individualization: acoustical measurements

A L o
> B AT ] >
y’ A Ll -
o BARGT T L

.~ -~

Air Force Research Laboratory, Nagaoka University of ISVR, University of

us Technology, Japan Southampton, UK

South China University of Technology, China Tohoku University, Japan
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Example: Smyth Realiser

N
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Summary of popular HRTF databases

Databases

IRCAM France
http://recherche.ircam.fr/equipes/salles/listen

CIPIC, UC Davis
https://www.ece.ucdavis.edu/cipic/spatial-sound/hrtf-data/

Tohoku University, Japan
http://www.ais.riec.tohoku.ac.jp/lab/db-hrtf

Nagoya University, Japan
http://www.sp.m.is.nagoya-u.ac.jp/HRTF/database.html

Austrian Academy of Sciences
http://www.kfs.oeaw.ac.at/index.php?option=com _content&view=article&id=608:ari-

hrtf-database&catid=158:resources-items&Iltemid=606&lang=en

TU Berlin
https://depositonce.tu-berlin.de/handle/11303/6153.2

MIT Lab
http://sound.media.mit.edu/resources/KEMAR.html

Oldenburg University (0.8m,3m)
http://medi.uni-oldenburg.de/hrir/html/documentation.html

SDAC, KAIST (0.2,0.6,1m)
http://sdac.kaist.ac.kr/research/index.php?mode=area&act=DownHRTFDatabase

RIEC University (1.5m)
http://www.riec.tohoku.ac.jp/pub/hrtf/hrtf data.html

Xie (Chinese Human subject database) (1.5m)
https://link.springer.com/article/10.1007/s11433-007-0018-x

DSP Lab @ NTU (0.35,0.45,0.50,0.60,0.75,0.8,1,1.4m)
http://eeewebc.ntu.edu.sg/dsplab/ewsgan/resource.html

(Subjects,
Directions)

(51, 187)

(45,1250)

(3,454)

(96,72)

(70,1550)

(FABIAN,11950)

(KEMAR,710)

(HATS,365)
(HATS, 100)

(105,865)

(52,493)

(HATS + 3 subjects, 600)

Measuring Conditions and Features

Far field: 1.95m

Source: Log sine sweep
Blocked ear canal

Far field: 1m

Source: Golay code

Blocked ear canal

Far field: 1.2m

Source: Time stretched pulse
Blocked ear canal

Far field: 1.52m

Source: Time stretched pulse
Not entirely block

Far field: 1.2m

Source: exponential sweep signal
Blocked ear canal

Far field: 1.7m

Source: Sine sweep

Blocked Ear canal

Far field: 1.4m

Source: MLS

Ear simulator

Far field: 0.8 —3m

Source: MIRS

In-the ear and behind the ear
Far field: 1m

Source: White noise

Far field: 1.5m

Source: Time stretched pulse
Blocked ear canal

Far Field: 1.5 m

Source: MLS

Blocked ear canal

Far field: 1-1.4m & Near field: 0.35m-0.8m
Source: MLS
Block era canal/Ear simulator

Length: 8192-pt/ 512-pt
Fs = 44.1 kHz

Anechoic room

Length: 200-pt

Fs = 44.1 kHz
Non-anechoic room
Length: 512-pt

Fs = 44.1kHz

Anechoic room

Length: 512-pt

Fs = 48kHz
Non-anechoic room
Length: 2400-pt/256-pt
Fs = 48kHz
Semi-anechoic room

Length: 256-pt
Fs =44.1 KHz
Length: 512-pt
Fs = 44.1 kHz
Anechoic room

Fs = 48kHz

Anechoic room/offices
Length: 200-pt

Fs = 44.1kHz

Length: 512-pt
Fs = 48 kHz

Length: 512
Fs =44.1 KHz

Length: 512-pt / 256-pt
Fs = 44.1 kHz
Anechoic room
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http://recherche.ircam.fr/equipes/salles/listen
https://www.ece.ucdavis.edu/cipic/spatial-sound/hrtf-data/
http://www.ais.riec.tohoku.ac.jp/lab/db-hrtf/
http://www.sp.m.is.nagoya-u.ac.jp/HRTF/database.html
http://www.kfs.oeaw.ac.at/index.php?option=com_content&view=article&id=608:ari-hrtf-database&catid=158:resources-items&Itemid=606&lang=en
https://depositonce.tu-berlin.de/handle/11303/6153.2
http://sound.media.mit.edu/resources/KEMAR.html
http://medi.uni-oldenburg.de/hrir/html/documentation.html
http://sdac.kaist.ac.kr/research/index.php?mode=area&act=DownHRTFDatabase
http://www.riec.tohoku.ac.jp/pub/hrtf/hrtf_data.html
https://link.springer.com/article/10.1007/s11433-007-0018-x
http://eeewebc.ntu.edu.sg/dsplab/ewsgan/resource.html

Reciprocal HRTF measurement technique

e Placing micro-speakers inside ear canal

e Spherical microphone array surround
subject

e Measure HRTF at frequency >1.5kHz
e Use HRTF of HATS at low frequency.

.......

[Zotkin, 2006]
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Existing HRTF acquisition techniques

« [Fast Continuous HRTF acquisition

v’ Moving loudspeaker or subject using continuous
excitation method

O Require rotating facility (e.g., turntable) for constant
speed movement

=

O

[Pulkki, 2010] [Enzner , 2008]
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Fast HRTF measurement system

> Head tracking allows free movements in azimuth / elevation
> A fixed loudspeaker continuously emitting broadband signal

> Binaural recording at listener’ ears and synchronized with
directional movements

> Visual display feedbacks the movement pattern

[He, 2015; Ranjan, 2016]
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Adaptive filter for dynamic HRIR estimation

Excitation Signal x(n)

° 0.5 | | | \ \ | | | \
EL
< o5 | | | | \ | ! | \
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Recorded binaural Signal y(n)
@ 2 | | | \ { | | | {
2o
S
<, | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Relative source direction #(n),after quantization
oo | | | \ | | | | I
$ — — Raw
;6; ol — Quantized
é -100 — =
< 200 | | | \ | | | | \
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Excitation signal
« Dynamically varying HRIRS L
» Corresponding directions ‘ yaw h[o(n),
Direction signal A o(n)]
known J)) {600).0(n)} HRIR

* HRIRs at neighboring ] (5 o |
directions show similarity and 2/' — S

signal Adaptive signal processing

continuity piteh y(n)
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Signal model for Fast HRTF measurement system

y() = h'[O(n),o(m)] x() + v(n)

Megsured \ V }LY_/ \—Y—/

Signal : :
Time varying Excitation Measurement
HRIR at Signal Noise
6(n), p(n)

Discretization of the continuous directions

y(m) = H'[d(m)[x(n) + v(n)

h(6,,91) h(61, )
: h(gk ’ Qom) :
h(6k,¢1) h(6x , oum)

K x M discrete HRIRs to be estimated

Hygy oy =
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Adaptive filter for dynamic HRIR estimation

Amplitude
)

Amplitude

20° \ih5e | 30° | 25°

e)

Azimuth (degres

HRTF estimation results matrix

rd

Amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Recorded binaural Signal y(n)

\

(0]
e
2
a
£
<
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)
Relative source direction d(n)
40 | \ | \
————————————————————————— - __ _ — — Raw
30— 350 i T =— Quantized | |

A
=)
I

Azimuth (degree)
S
I

o

0 0.1 0.2 0.3 4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Progressive based NLMS h,,,;(35%) = h,(35%) + u o ( )Hze(n)
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Adaptive filter for dynamic HRIR estimation

Amplitude
)

Amplitude

20° \h5e (Lhoe | 250
//

BV 4 4 4 o HRTB€stimation results matrix

e)

Azimuth (degres

rd

e
”

Amplitude
o

-0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)
Recorded binaural Signal y(n)
\

(O]
©
2
o
€
<
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)
Relative source direction 4(n)
40 | \ | \
————————————————————————— F—-——————— = — — Raw
30 — —— - ied |
350 300 -—t - m— Quantized

N
o
I

Azimuth (degree)
S
[

o

0 0.1 0.2 0.3 0.7 0.8 0.9 1
T|me (s)
x(n)

Progressive based NLMS  h,,,,(30°) = h,,(35°) + i i )Hze(n)
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Adaptive filter for dynamic HRIR estimation

Amplitude

a0° As0 (Ls042 o5
//'

HRTF/e%ation results matrix

e)

Azimuth (degres

Amplitude

7 7.1 7.2 7.3 74 7.5 7.6 7.7 7.8 7.9 8
Time (s)
Recorded binaural Signal y(n)
I

Amplitude

7 71 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8
Time (s)

Relative source direction 6(n)

— — Raw
= Quantized

J

—

Azimuth (degree)

7.5
Timefs

Progressive based NLMS  1,,,(30°,2)) = h,(25°) +

x(n)
Hixez 6™
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Adaptive filter for dynamic HRIR estimation

Amplitude

a0° As0 (Ls042 o5
//'

HRTF/e%ation results matrix

e)

Azimuth (degres

Amplitude

7 7.1 7.2 7.3 74 7.5 7.6 7.7 7.8 7.9 8
Time (s)
Recorded binaural Signal y(n)
I

Amplitude

7 71 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8
Time (s)

Relative source direction 6(n)

— — Raw
= Quantized

—

Azimuth (degree)

Activation based NLMS h,,,(30°,.(2) = h,,(30°, )+ pu—-=e(n)

x(n)
Ix(m)1I3
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(1) Static vs dynamic measurement

Dynamic Measurement

Static Measurement
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Static vs dynamic acquisition: Spectrogram
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Static vs dynamic acquisition: HRIR/HRTF
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Static vs dynamic acquisition: ITD and ILD
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Static vs dynamic acquisition: Identification accuracy

1

ool | > Over 90% accuracy in identifying

| B difference  from human and

081 d 1 dummy head.

07t | % T > Only 50-75% accuracy in

06| f | identifying static HRIR and
% dynamic HRIR.

Accuracy
o
(@)}

Guessing level > Most subjects reported that they
| need to focus to make the

o
~
T

0.3 selection on static vs dynamic
—&— Dummy vs Human HRTE.
02 —O&— Static vs Dynamic |
0.1
0 l .
White noise Music Speech Bird

Tracks
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(2) Head tracker vs. VR Oculus Rift

HRTF Acquisition using head-tracker HRTF Acquisition using Oculus Rift
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Head Tracker vs VR: HRIR/HRTF
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(3) Head Above Torso Orientation (HATO)

Head Above Torso Orientation Head Above Torso Orientation
Aligned Not-aligned (Torso Fixed)
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HATO Aligned vs Not-aligned: HRIR/HRTF
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HATO difference on HRTF: physical and perceptual
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» More difference exists in
* middle frequency
e contralateral ear (280 to
360 degree)

» Easily distinguishable with
broadband signals, but less
difference with speech signals

» Subjects mentioned coloration
and localization difference
between 2 types of HRTFs

[Brinkmann, 2015]
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Key observations on fast HRTF measurement system

> Allows fast HRTF measurement with unconstrained
movements

> For static vs dynamic measurement:
o Good match in spectrum, ITD, and ILD
o Perceptual difference: low identification accuracy

> Differences in VR/AR gear must be compensated

> HATO aligned and not-aligned are more obvious in
contralateral HRIRs and in middle frequency.
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Similar system from Leibniz University Hannover
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{ &

EARFISH

Earfish’s fast HRTF measurement system

e Asingle fixed loudspeaker continuously emitting an excitation signal

e Response recorded at listener’ ears and synchronized with dynamic
head movements

e Use sinesweep, but algorithms unknown

IMU with head strap

(?

ANECHOIC KEMAR

| 0
0

frequency (Hz)
.
v

0.5 05

) O

https://www.earfish.eu/ [Reijniers, 2017]

0 % 180 0 20 180 0 90 180
elevation (°) elevation (°) elevation (°)
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HRTF interpolation

Directional resolution: measurement < rendering
Methods (domain):

|
> Directional  Hy =) _WH,
i=1

« Minimum phase, magnitude/phase [Nam, 2008; Jot, 1995]
« Use nearest 2, 3, 4 directions [Xie, 2013; Gamper, 2013]

« Better performance with denser input,
lower frequency, ipsilateral ear [Christensen, 1999]
> Spectral basis (e.g., PCA) [Martens, 1987]
> Spatial basis (e.g., spherical harmonics) Evans, 1998
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Individualization: anthropometric measurements

xyq  height
xp5  seated height

Figure 2: Head and torso measurements Figure 3: Pinna measurements

Anthropometry database

Anthropometry HRTF of
ofanew = Individualization M2 the new
Numeric simulation person person?
1. 3D head and ear model construction 1‘
via 3D scan/video/images HRTE database

2. Solving of acoustic equation
3. Numerical methods: FEM, BEM, FDTD
4. How to make it more efficient

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.65 /100



HRTF database with 3D models

ITA HRTF-database

48 subjects, head and ear
models (FMRI)

http://www.akustik.rwth-aachen.de/go/id/Isly

[Bomhardt, 2016]

Princeton University 3D3A Lab
(using 3D camera sensor and
Siinsins blue light)

Carmine 1.09
http://www.princeton.edu/3D3A/HRTFMeasure
wig cap ments.ht

Artec
Space Spider /7

alignment
marker

[Sridhar, 2017]
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HRTF databases with anthropometry

HRTF database Year Region CILET T
Dlrectlons features

CIPIC
Nishino et al
Xie et al
TUM LDV

Microsoft
Research

(b)

2001 Western 1250

2007 86 Japanese 72 9
2007 52 Chinese 72 17
2013 35 Western 2160 8
2014 250+ Global 512 45+

Head width: strong correlation with ITD
[Middlebrooks, 1999; Xie, 2007]
Significant anthropometric parameters
« Distance between ear and shoulder, breadth of
head and back vertex; breadth and depth of
cavum conchae and rotation of ears [Fels, 2004]
» head depth, pinna offset back, cavum concha,
width, fossa height, pinna height, pinna width,
pinna rotation angle and pinna flare angle
[Zhang, 2011]
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Techniques using anthropometric features

e A diverse database of HRTFs and Anthropometric (A) features
e Apply relation among A features in HRTFs

« Select HRTF set based on the closest A features [Zotkin, 2003]
» Linear sparse representation of A features [Blinski, 2014; He, 2015]
e Train relation between A features and HRTF

« Transform HRTF into a different domain using, e.g., PCA, SVD, Least-squares,
spherical harmonics, NMF, etc.

« Select anthropometric features

« Training using multiple linear regression, ANN, DNN, SVM, etc.

« Direct relation via frequency scaling, resonant frequency [Zzho;ﬁmz,ozé)g?';_i
Anthropometry database,], 2013;’Fayek’, 2617]
Anthropometry o o HRTF of
ofanew —2 Individualization =2 the new
person person?
HRTF database?
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Performance on machine learning methods

Mean spectral
distortion SD (dB)
PCA + NN <3

[Zhou, 2008]

SVD + RBF NN ~3
[Li, 2013]

Isomap + NN 4.6
[Grijalva, 2016]

NN 3 Note: Mean SD was
[Favek, 2017] computed differently.
1. Why NN still not good? Maybe still lack a big and diverse
HRTF and anthropometry dataset
2. Standard method to obtain anthropometric features?
3. How about perceptual performance? SD is not a good
criteria and HRTF can be simplified to remove perceptually
irrelevant details.

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.69 /100



Commercial examples

IDA audio

3D Sound labs Creative Labs Super X-FlI
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Individualization: training/tuning via listening

Mendonca et al

PERSONAL|
DIAL DOWN THE VoL X vouriy

ME UNTIL YOU BAN
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Individualization: headphone projection

120
nch
Conchae ol
E 100 .............................................
= o ’ L . 2 :
S A Z -\ WPRAnE
Q 9 | ,, ~ = .. tean Wi
) = sl W
Z
% 8O0 B - - e e
>
=
% 70k R O IR ITar L oL priehteguency
g —— : Frantal projection response:
60 b ——FrontaIHRTFs ....... ......
FRONT N 50 3 '4
EMITTER 1 10 10
Frequency(Hz) _
5 kHz 16 kHz

e No additional measurements and listening
experiments required

e Reduce front-back confusion by > 50%;

e Zero user effort, plug and play (automatic
during playback)

[Sunder, 2013; Sunder, 2015]
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Example: OSSIC X Multi-driver Headphone

OSSIC X: The first 3D audio headphones $2,708,472
calibrated to you pledged of $100,000 goal

Q@ San Diego, CA & Sound @ Project We Love

@ A .

HRTF ANATOMY CALIBRATION NTEGRATED HEAD TRACKING MULTIDRIVER ARRAY
QSSIC X instantly calibrates to your head and By incorporating head tracking into the OSSIC X Eight individual drivers work in tandem to play
torso calibration, without any lab needed. This sounds will appear to come from outside your head back sound to the correct portion of your ear. This
enables incredibly accurate sound placement for and stay fixed in space, enabling a higher sense of allows your unique ear shape to naturally interact
higher level of sound quality and immersion acoustic presence with the 30 sound field the same way it does in
real life
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Comparison of HRTF individualization techniques

Techniques Resources U.ser . Performance
contribution
Static 5 5 5
Acoustic
Dynamic 5 4 4
3D model 4 2 3
Anthropometric
Features 2 2 2
. . Training 1 3 2
Listening :
Tuning 1 3 3
Headphone Projection 3 1 3
Non-individualized HRTFs 0 0 1

A The numbers are for illustration of our qualitative relative opinion purpose only
» 5/4/3/2/1/0: Very High / High / Medium / Low / Very Low / No
 Resources include hardware, software, database, etc.
« User contribution includes user’s time and efforts
 The actual performance must be evaluated in psychoacoustic experiments

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.74 /100



B.4 Equalization

Headphone is not acoustically transparent:

e Headphone colors the input sound spectrum;

e Affects the free-field characteristics of the sound pressure
at the ear

— Headphone
~  Transfer Function
(Idiosyncratic)

Headphone acoustic

Headphone-ear
transducer P

coupling
(Idiosyncratic)

Breakdown of headphone transfer function (HPTF)
[Mgller, 1995]
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Decoupled equalization for stereo

Aim: Emulate the reproduction in a reference field
> Free-field:
 Target: free-field front loudspeaker response

» Diffuse-field and other reference curves:
* Target: response of diffuse-field, or a reference room

* Lesser inter-individual variability

Preferred Headphone Target Response

| _ [Olive, 2013]
Source from http://seanolive.blogspot.sg/2014/01/the-perception-and-
measurement-of.html
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Non-decoupled equalization for binaural

Aim: Spectrum at eardrum is the individual HRTF features

» Conventional headphone: removing HPTF
* EQ=1/HPTF
* Dependent on individual pinna feature and repositioning
» Projection headphone: preserving individualized HPTF
 EQ-=1/free-field HPTF

* No headphone-ear coupling

Transducer

» Inversion requires regularization =

[Pralong, 1996; Kulkarni, 2000; Larcher, 1998; Sunder, 2013;
Kirkeby, 1999; Norcross, 2004, Lindau, 2012; Gomez-Bolanos, 2016]
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B.5 Movement Tracking

Original scene
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6 DOF movement tracking

Y AXIS YAW

Y AXIS UP/DOWN LEFT/RIGHT Z AXIS FRONT/BACK

e Track all 6 DOF ideally but could be simplified

e Positional tracking
« Camera based, laser based techniques
« Affect direction, distance, diffraction perception

« Perceptual effects on localization accuracy and latency need
more investigation

https://developers.facebook.com/videos/f8-2017/surround-360-beyond-stereo-360-cameras/
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Head tracking

> Head movement information is tracked by a sensor (e.g., accelerometer,
gyroscope, magnetometer, camera)

Adapt to the changes of sound scene with respect to head movements
Cross-fading is required to ensure smooth perception
Scene update rate: 50ms or lower [Sandvad, 1996]

YV ¥V ¥V VY

Concern of head tracking latency: <100ms (variation high)

e I
us I
7 {
. 8
-------------- s §
7 f\ : L
RIGHT I
|
A |
|
W |
|
|
|
Source from http://3dsoundlabs.com/en/ Source from http://north-america.beyerdynamic.com
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Head tracking improves source localization

¢ Reduce front-back confusion(FBC), especially
with non-individualized HRTF ezl 19624, 1995, sandvad, 1006:

Horbach, 1999;Wightman, 1999]

¢ Improve externalization for front and rear
sources, especially using non-individualized
HRTFs [Hendrickx, 2017]

e Reduce FBC from 50% to 28%, more than
reverberation and individualized HRTF.  [Begault 2001]

¢ Enhances the realism of the virtual acoustic
environment as a whole [Wenzel, 1991; Saviojia 1999]
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B.6 Environment rendering

> Apply artificial reverberation to binaural rendering
- Externalization of the sound sources, and enhance depth perception;

- Rendering of the sound environment.
More on this during the 2" half of this tutorial

Early Subsequent
Reflections Reverberations
Direct Sound 1T 1
s 50~ 80 ms
l
1
g
gl !
= 1
€ '
< i
1
1 Time
Subsequent
Direct Sound Early Reflections Reverberations
[I;) Source H;) Source ﬁp Source
l M
e O o] & o
ZIns Source from
http://www.torgny.biz/Recording%20sound_2.htm
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B.7 Integration

e - - T
. I Rendering of natural sound
ead ! .
Head traclkang
movement Headphone
i Hearing aids
Individual ! Individuslization Headset
param eters :
|

Virtualizat on

|
I i
1
i : a
Virtual : i (]’Einanra] Rendering Environment ! -
: T \ Equalization
sources : ! L (Source) Rendering :
I : ¥ i
U
|
i
Virtual :
environment :
|

[Sunder, 2015]
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Authenticity of individual dynamic binaural synthesis

anechoic: V=150 m* dry: V=120 m?, RT;44,=0.7 s

Compare real sound and virtual binaural synthesis with individualized HRTF/BRIR and
HpTF measurement, allow head movements, using ABX test and Spatial Audio Quality

Index (SAQI) test.
In terms of the detections rates: L ohed PR
= . . e o 22 g
* Pink noise (all) > speech signals (half). e .« o2 1o B
* Anechoic > reverberant, for speech. So - +-e----ezene i §
. . . E e o2 o416 g
* Coloration > localization. & 625 S S -
* Dynamic > static. L 5 LR -

noise —» speech —>

‘ane'icﬁmc dry wet ar?e&c'}lc dry wet®

0° 90° 0° 90° 0° 90° 0° 90°c 0° 90° 0° 90°
source

Suggesting for every audio content, if sufficient care taken for acquisition, postprocessing,
and rendering, authentic binaural synthesis can be achieved.

[Brinkmann, 2017]
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3D Audio Headphone: an example

Sources

PAE £
- EQ All

_ Diffuse ‘

emitters

EQ Front
Front ‘ emitters

Am bien ce FRONT Dl SIDE EMITTER
EMITTER
(a) MOS for 4 measures (b) Scatter plot for all scores
100 © - v < 100 -
I Natural sound rendering (c) Preference of the tracks
I Conentional stereo

90 - 1 80-°
o g .o 33%
S 3
@ 80 S 60F o
15 =
= §
< 70 = 40 61%
= !

=z 6%
60 - 20 -
I rcfer Natural sound rendering
50 - 0~ - : [ INot sure
1 2 3 4 0 _50 100 I rrcfer Conventional stereo
Measure Conwentional stereo
> A grade higher in 4 measures: Sense of direction, externalization,

ambience, and timbral quality; more preferred. [Sunder, 2015]
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Spatial Audio Technologies for Immersive VR, AR/MR

WS Gan, JJ He, R Ranjan, R Gupta
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Paul M. Hoffman, “Relearning sound localization with new ears,” nature neuroscience, volume 1
no. 5, september 1998

S. Carlile (2014) The plastic ear and perceptual relearning in auditory spatial perception. Front.
Neurosci. 8:237. doi: 10.3389/fnins.2014.00237

D. Arteaga, “Introduction to Ambisonics,” Technical report, 2015
B. Rafaely, Fundamentals of Spherical Array Processing, Springer, 2015

J. Herre, J. Hilpert, A. Kuntz, and J. Plogsties, “MPEG-H audio—the new standard for universal
spatial/3D audio coding,” J. Audio Eng. Soc., vol. 62, no. 12, pp. 821-830, Dec. 2013.

K. Sunder, E. L. Tan, and W. S. Gan, "Individualization of binaural synthesis using frontal projection
headphones," J. Audio Eng. Soc., vol. 61, no. 12, pp. 989-1000, Dec. 2013.

W. S. Gan and E. L. Tan, "Listening device and accompanying signal processing method," US Patent
2014/0153765 A1, 2014.

Xie, B., 2013. Head-related transfer function and virtual auditory display. J. Ross Publishing

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module B 16t Apr. 2018 B.88 /100



References on parametric spatial audio processing
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Module C

Augmented/Mixed Reality Audio
in Headsets

1. Types of Augmented/Mixed Reality Audio

2. Natural Listening in AR/MR: An overview

3. Signal Processing Techniques in Natural Augmented Listening
4. Hear Through of Real Sound

5. Virtual Sound Augmented with Real Sound

6. Acoustic Environment Estimation and Rendering

7. Conclusion



C.1 Augmented/Mixed Reality: overview

Augmented/Mixed reality is enhancing the way we
experience the real world

Wearable AR/MR devices:
> v

Meta HoloLens Magic leap

AR/MR applications:

/\rlgg\\\\\‘ . )

" N - A
Navigation VR and AR world
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What is Augmented/Mixed Reality Audio

A layer of augmented digital information

Usually tagged with location based digital audio
information playback ; N F V)

Spatial audio superimposed
with real sounds

Interaction between real
and augmented audio
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C.2 Natural Listening in Augmented/Mixed Reality

Real

Augmented Reality (AR)
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C.3 Signal Processing Techniques in NAL

Real

Augmented Reality(AR)

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module C 16t Apr. 2018



Natural Augmented Listening: 3 Major Components

e Hear through of real sounds

Real @ Hear Through |
Sound E (Transparent Headphones)

Headphones might need to be equipped with external microphone(s)
to record real sounds (to be equalized & playback)

e Virtual sounds augmented with real sounds seamlessly

Virtual Acoustic environment Binaural Rendering o 7,
Source estimation & Rendering Over Headphones

Built in sensors to capture and estimate Built in internal microphone(s) to
the local acoustic environment ( for capture individual cues for
environment rendering) binaural rendering
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Which headphones to choose for NAL?

Augmented content delivery methods varies based on
design/choice of headsets
Open Headphones Closed Headphones

‘ '

Type | — Type Il — Type Ill — Type IV —
Personal speaker Open-back over Closed In-ear Closed-back over
(No earcup) ear headset headset ear headset

- Allows natural sound to pass through - Blocks most of the natural sounds

- Show best externalization - Introduces occlusion effect

- Privacy issue due to leakage - Transparent hearing using electrical hear
- Poor bass for speakers through
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Headset Modes of Operation

(A) Hear Through mode
« Only real sound source present

(B) Virtual Reality mode
« Only virtual sound source present

(C) Augmented Reality mode

« Both real and virtual sound source present with natural
fusion of two

(D) Enhanced/Mixed Reality mode

« Both real and virtual sound source present with
selective control of the real sound

« Only applicable for closed headset design
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C.4 Hear Through of Real Sound

e AR headsets should allow the direct sounds coming
from physical sources for acoustical transparency

« Open headphones allow most of the natural sounds to pass
through unattenuated

o Closed headphones block most of the natural sounds

e Headphones Isolation obtained by measuring the
speaker response at subject’s ears with headphones,

Hyitn np(f) and without headphones, H,.¢(f) :

|Hwith hp (f)l
|Hyer (F)]

t Open-back headphones attenuates poorly in higher frequencies [See next slide]

Attenuation|dB], A(f) = 20log4,
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Headphones Isolation Characteristics

Attenuation curves for 4 different types of headphones

10

~ -10
Z
c
i)
= -20
>
c
Q
< .30
—— Open-Back Headphone Y- ' ’
40 - — Personal Speaker vl |
--=-Closed-Back Headphone
= = Closed In-earphone ANC OFF
_50 1 1 | 1 1 1 1 1 1 | 1 | L I 1 | |
102 10° 10*

Frequency (Hz)
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Headphones Isolation Characteristics

Attenuation curves for 4 different types of headphones

10

Attenuation (dB)

—— Open-Back Headphone
40 - — Personal Speaker

— Closed-Back Headphone
—— Closed In-earphone

.}

50 Lt
102

103

Frequency (Hz)
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Headphone Isolation - Summary

r(n)

Type | (Personal

Spea

Fedl @ —»[hutt)]—> ¢

source

A(f) =

ker)

No earcup

Mint

rint(n)

o Sony PFR (Personal Speaker)

-10

-20

Attenuation (dB)

-30

-40

-50

T T 0

&
T 10

5
Passive ® 20
Hear 8 <0
Through -40
-50

102 10° 109

Frequency (Hz)

source

Rea @-’-’ =
r(n)

Type Il (Open-back
over ear headset)

Open earcup

1 f<f
A(f)_{« 1,f2ft:

AKG 702 (Open Back)

W—Af’\

Passive Active

Hear Hear

Through Throug
10° 10° fth 104

Frequency (Hz)

Type lll (Closed in-ear

Real
@

source

r(n)

Attenuation (dB)

-10

-20

-30

-40

-50

headset)

Closed In-ear

> [a() >

Mint

rint(n)

A() « 1

Sony 1000 X2

0 (Closed back ANC OFF/ON)

N

—— ANC OFF
--— ANC ON

Active””
Hear
Through

10° 10"

Frequency {Hz)

107

Type IV (Closed-back
over ear headset)

Closed earcup

Real
source® _>_>
r(n)
A(f) « 1
QC 30
0 (In ear ANC OFF/ON)
—— ANC OFF
0 ---- ANC ON
o
T -10
[
S J
"o
2 Active
£ -30 N4
< Hear
“ Through
-50
10° 10° 10*
Frequency (Hz)
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Active Hear Through Mode

e Open ear scenario (Reference)

Signal at m,; :

r(n) * hyep(n)

\ J
|

Reference real signal,
Trer(n) captured
without headphones

Real
—%»| ht(n) | —»
source@ ret (N)

r(n)

mint

Mref (n)

href(n): Impulse response at m;,;
measured without headphones
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Active Hear Through Mode

e Attenuated/Leaked real signal (No EQ)

Signal at m,; :

r(n) * hipe(n)

\ J
|

Leaked real signal,
e (n) captured
with headphones

Real
@

source

r(n)

hi,;(n): Impulse response at m;;,;
measured with headphones

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module C 16t Apr. 2018 C.14 /95



Active Hear Through Mode

e Equalized/Compensated real signal (After EQ)

ReaI
source

r(n) ‘

Complete acoustical transparency can be achieved by recording,
processing, and playback of real sound at an external microphone
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Active Hear Through Mode

e Equalized/Compensated real signal (After EQ)

Signal at m,; :

r(n) * hipe(n)
_|_
\Text (n) *s(n) * hhp (TQ
Y
Processed real signal,
frer(n) after
headphone playback

Real
source

r(n) ‘

hexe(n): Impulse response at M,
measured without headphones

s(n): Hear through EQ filter
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Active Hear Through Mode

e Equalized/Compensated real signal (After EQ)

Signal at m,; :

r(n) * hipe(n)
_|_
Mint \rext (n) * s(n) * App (TQ
Y
Processed real signal,
frer(n) after
headphone playback

ReaI
source

r(n) ‘

[ =0 ] rin(n)

Active Hear through EQ design factors:

1. Leaked real signal must be strongly isolated i.e., 1;,,;(n) = 0

2. Processed real signal should follow reference real signal i.e., .o (1) = Ty (1)
3.  Minimum electrical delay between leaked and processed real signal
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Active Hear Through Mode

e Assuming energy of leaked real signal much lesser
than that of processed real signal i.e., E|r;,;(n)] <

E [Tref (n)]
() * hine(n) + Toxe(n) * s(n) * hhp (n)
] |\ J
\ | |
T mt(n) ~ 0 7”\'ref (TL) = Tref (TL)
1’
Hext(f)S(f)th(f) — Href(f)
1’
H 1
S(f) _ ref(f) v
Hext(f) th(f)
Hear-through EQ must account Headphones non-flat response
for difference between transfer should be equalized while playing
function Hey:(f) and Hy.o¢ (f) back (same as Headphone EQ)
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Active Hear Through Mode - Summary

Type Il (Open-back) 7

Open earcup

(1) EQ designed as high-pass
filter

(2) EQrequires pinnae cues to
be embedded

(3) Strong Comb effect due to
poor attenuation

(4) Delay between leaked and
processed real signal in high
frequency
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Active Hear Through Mode - Summary

Type Il (Open-back) 7 Type lll (Closed In-ear)

Open earcup Closed In-ear

Real
—>»| h..(n
source® en(M)

r(n)

Mint

(1) EQ designed as high-pass (1) Best suited for EQ if tightly

filter fitted as pinnae cues are
(2) EQrequires pinnae cues to preserved in 1p, (1)

be embedded (2) Occlusion produces unnatural
(3) Strong Comb effect due to listening of real sound

poor attenuation (3) Loose fittings result in poor
(4) Delay between leaked and isolation

processed real signal in high  (4) Delay between leaked and

frequency processed real signal
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Active Hear Through Mode - Summary

Type Il (Open-back)

Type lll (Closed In-ear) Type IV (Closed-back)

Open earcup

Mint

(1) EQ designed as high-pass
filter

(2) EQrequires pinnae cues to
be embedded

(3) Strong Comb effect due to
poor attenuation

(4) Delay between leaked and
processed real signal in high
frequency

Closed In-ear Closed earcup

Real @ 3
source

r(n)

) e @) |20

Mi: source oxt

r(n)

(1) Need EQ for entire
spectrum

(2) Strong isolation irrespective
of headphone fitting

(3) Open ear canal listening but
pinnae cues need to be

embedded

(1) Best suited for EQ if tightly
fitted as pinnae cues are
preserved in 7o, (1)

(2) Loose fittings result in poor
isolation

(3) Delay between leaked and
processed real signal

(4) Occlusion produces unnatural
listening of real sound

Both Type Ill & IV design additionally gives us more control over real sounds. Real sounds
can either be 1) fully blocked 2) selectively passed or 3) completely hear through

C.21 /95
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C.5 Virtual Reality Mode

Binaural Synthesis using headphones playback

Internal
microphon
Mint

<11/ Hppf) = BRTF(f) = X(n)

th(f)

Headphone transfer
function (HPTF)

e Virtual monaural signal convolves with Binaural room transfer

function
e |ndividual HPTF effect must be removed using equalization
filter:
— Direct inversion of HPTF (Bouchard, 2008]

— Using an adaptive algorithm like FXLMS
[Kuo and Morgan, 1995]
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Type | — Open ear Design

e Most simplest form of design as real sounds reach
unaltered allowing natural fusion

WP soice
o &
- -

source

HoloLens with

. . : : open ear design
Binaural rendering | Acoustic environment
(HRTF & HPTF) | rendering (BRTFs) - Ideal hear through
- HRTF adapted to estimated
f head width

Fixed Room Reverb options
(small, medium, large)
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Type Il — Open-back Design

A headset structure with two pairs (int/ext) binaural microphones
attached to the earcups.

* Headset equipped with 2 pairs of binaural microphones
* Adaptive Headphone equalization for virtual augmented sounds
* Natural mixing of real and virtual sources (Passive hear through)

Internal
microphone
Mint

!External m
%, microphone

NAR headset prototype

Internal microphone used as error microphone to adapt the virtual sound at
ear canal to natural sound. External microphone used as reference
microphone to capture real sounds.

[Ranjan and Gan, 2015]
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Type || — Augmented Reality Mode

Augmented reality mode — virtual sound reproduction in the presence of

external signals Personalized HRTF selected from
) Desired signal path / database
&= Personalized ;
) HRTF database X(n) —» h'in(N) : :
Virtual . Open earcup
>ource x(ﬁ) ~~~~~~~~~~~~~~~~~~~~~~~~ : .’ r(n) —> hix(n)
3 /7 Actual signal path
Real Mext {17 ,
_> ' :
sourcdd el "Q-L[[]g’ ()~ wi) )
r(n) leakage \ls
signal RN
1(n) ~ Fext(N)
Yer(N)  VYine(N) r(N)—> hex(n) hie(N)
I(n): Leakage from headphone to
" external microphone, m,,;
Xint(n) = w(n) * hpp (n) * x(n)
Aim: To reproduce virtual sources as if HY. ()
they sound similar to physical sources, W(f) = H‘"t
without being affected by external sounds rp ()

[Ranjan and Gan, 2015]
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Type Il — Int and ext Transfer Functions

H;,;(z) is an approximate HRTF with additional headphone effects
H,..(z) contains all individual related characteristics and environment
minus the pinnae specific notch and headphone shell reflections

100 T T T T T [ S S S 100

90 90|
g ©
2 g0 2 &
£ £
g S 70
(o]
~ S~
2 60 D e
2 5 D 5
£ c
o 40 o 4
© el
2 30 2 30
c c :
& 2 I . e
= Lol Odegree Ieft S Lol Odegree rlght
b - b .4

IOZ 103 10A 101 103 104
Frequency(log scale) Frequency(log scale)
100 T A A | T A | 10 T

Magnitude in dB (dB/20mupa)
Magnitude in dB (dB/20mupa)

. 20 degree Ieft . 20 degree rlght |

b D S S

0 2 3 4 2 3 4
10 10 10 10 10 10
Frequency(log scale) Frequency(log scale)
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Type Il — Mixing virtual augmented signal with real ext source

Augmented reality mode — virtual sound reproduction in the presence of external
sounds: Hybrid Adaptive Equalizer (Assuming negligible leakage signal power, [(n) = 0)

x(n) Desired signal path

/ | A

Hybrid adaptive u(n) -éz + Adaptive |

—> equalizer Yintd(N) estimation | v (n)
/ e'(n) /

[Ranjan and Gan, 2015]

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module C 16t Apr. 2018 C.27 /95



Type Il — Mixing virtual augmented signal with real ext source

Augmented reality mode — virtual sound reproduction in the presence of external
sounds: Hybrid Adaptive Equalizer (Assuming negligible leakage signal power, [(n) = 0)

Hybrid adaptive equalizer: simple
combination of conventional and
modified FXNLMS

x(n) »9(N-A) ————> h'i(n)

+> App(n) —> FXNLMS ——

x'(n)

X

> wi(n) | f
w(n)i | h'ex(n) : }"U(n) m@i_ wi(n) [< <

Fi(N Fei(N
(pwriw () oxt(N)
— e’(n
Xext(n) A ( )
—> /inp(N) — FXNLMS LMS

X'ext(N)
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Type Il — Mixing virtual augmented signal with real ext source

Augmented reality mode — virtual sound reproduction in the presence of external
sounds: Hybrid Adaptive Equalizer (Assuming negligible leakage signal power, [(n) = 0)

x(n) > o(N-A) > h'ine(N)
- d(n
+—> Aipp(N) —> FXNLMS <€—— ")
R N 1) == T |
> wa(n) [ [Acoustic domain A
v I Hu(n) : X (M~ i
w(n)i | he(n) « T—> hnp(N) € wi(n) €——
: E 5 rint(ﬂ) rext(n)
LA () = S N :
(o | [ — R () %)
—> /inp(N) —> FXNLMS <€ LMS
X exe(N)
wy(n): Adaptive filter corresponding to conventional FXNLMS

« Slower convergence rate due to presence of
secondary path transfer function

w,(n): Adaptive filter corresponding to Modified FXNLMS
« Faster convergence rate by introducing spatial filter,
h.,+(n) in the secondary path but slightly higher
steady state error (shorter filter taps)
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Type Il — Mixing virtual augmented signal with real ext source

Augmented reality mode — virtual sound reproduction in the presence of external
sounds: Hybrid Adaptive Equalizer (Assuming negligible leakage signal power, [(n) = 0)

x(n) > o(N-A) > h'in(N)
. d
> /iy (N) —>{ FXNLMS [€—— (n)
e X
g Q) " Rcousic dopin
v \ ' X (N
w(n)i |Nex(n) « hip(N) N
Fexe(N)
> Wo(N)1— [
"""""""""""""""""""""""""" G R Fing(N
Xeu () > /1np(N) > FXNLMS [« ) LMS
X’ ext(N)
Hybrid adaptive filters : w(n) = wi(n) + hYexe(n) * wo(n)

Ir
W(f) = Wi(f) + Hexe (FHW2(S)

 Spatial information retained in h",,;(n) results in faster convergences and
smaller MSE using hybrid adaptive filters.
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Type Il — Adaptive estimation

Fext(N)
Augmented superimposed signal:
Vint(M) = Xine () + 135:(n),
where,
Xint(n) = hhp (n) * u(n)
: 0

Error signal: , .

e'(n) = {d(n) + fipe (M)} — Yine () /

{d(n) — xine (M)} + {—(rine (M) — e (M)}
e,(n) + e.(n)
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Type Il — Results

0.15 : : - - - . . . . [0l e — ——— ™M
o1l SS-MSE =-13.88dB | | o4l SS-MSE =-29.28dB |

2 oo0sf 4 |o.05f .
L
5 o o
S
$ -0.05¢ 4 fo.ost .
o Conventional FXNLMS with Hybrid FXNLMS with no real

| no real sound 117 sound

-0.15 . . . . L . : L ! -0.15E L L L L L ! I ! L _

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

ol SS-MSE=-18.07dB || ..} SS-MSE =-27.34 dB ]

0.05f 10.05F
of ok
-0.05f 1 fo.os}
Hybrid FXNLMS with real sound Hybrid FXNLMS with real sound
| present and NO adaptive estimation | | ' present and with adaptive estimation
-0.15 L | L | i 1 1 i 1

i I i | 1 d 1 1 i L
0O 01 02 032 04 05 06 07 08 09 1 'D'l“:} 01 02 03 04 05 06 07 08 089 1
Time in seconds Time in seconds

Hybrid FXNLMS with adaptive estimation works equally well even in the presence
of real sounds reproducing the virtual sources as close as possible to real sources.
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Type Il — Listening test setup

e 7/ loudspeakers: 5 in horizontal plane and 2 in median
plane

Listening Test Set up (& : Elevated speaker; & : Azimuth speaker)
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Type Il — Listening Test Results

1 1 1 Same 10 I e
e Subjective te.st.evajluatmn om0 E ﬂ i Q il
for sound similarity and ditinguishable * | T T LT T L L
. e . . . Very similar 6 T — | :
source position similarity N .o Lo
Similar 4 -
Barely similar 2 T
= % - Completely Sound similarity
A@\_ %\ /L\ ’}% _/&B different

~ Same 10 B R

—i l Iil ﬁ u B
Ming Very close 7.5 | + 4 -
Mot D(k/lb .

Close 5 : |
+ | '
1 .
u(n) ‘ Different 25 * L 1
'/ \N - . . .
C- ~4 D Very _Sourc+:e position similarity |
different

F A B C D El E2
[Ranjan and Gan, 2015] Speaker Position
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Type Il = Closed In ear headset design

e Use of closed in-earphones with external mic to
capture the real sound, process, and playback

e Basic idea is to relay the external sounds unaltered

with minimum latency (<1ms) i
| L

A

/

&F@j (CHy O
N4 =

t

IMPUT AURALIZATION
TUT | AcousTics .
MODEL HRTF'

'?" 'T" _II+|' LOCATION AND ORIENTATION

PSP |

Left and middle: ARA headset (Philips SHN2500) ! COSTIo PARAMETERS

Right: Prototype ARA mixer — TTTTTTTommm T
ARA headset system diagram

[Harma et al 2004, Tikander et al 2008]
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Type Il — (Headphone Fittings)

e Difficult to predict the headphone response if loosely

fitted

Magnitude (dB)

. . . e — . . . . ot . . :
B LT RS BT e N
- ' ' L et e -.-.--.—_“_.=-"."‘""|T_ |.ll '
—20 e A i S A b e M
C =T / : Tight fittings

©  Loose fittings ~ * e IR,

A

T-1icl Freedfield  hciteniin

100

1k
Frequency (Hz)

10k

[Ramo and Valimaki, 2012]
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Type lll — Hear Through Equalizer

e Closed in-ear phones modify the ear canal resonance

due to blocked ear canal (pressure chamber principle)
—20 —— :

30 b THode at] .+ . Unequalized o EXtrahalf- |
[ ;Poostatlow = * " " ARA headset 1 wavelength
—40 |- : frequencies. . .. . . / SVioTC it rasonance

70T\ Open ear case  No quaiter: - f
B T T e .[wave].ength-.~ wofes L

Magnitude (dB)

.« + . ..... | respnance: - -f ... VYV |

T0 \ 1y '::/"idk
ARAnﬁx%r ' /

ya Vs N

1st-order
highpass peak notch

W
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Type lll — ARA Headset Equalizer

e Generic ARA equalization based on 4 individual
measurements

—10

|
b2
=

Magnitude (dB)

T S I N B
100 1k

10k
Frequency (Hz)

[Ramo and Valimaki, 2012]
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Type lll — Hear Through Mode using an All Pass

e Extend the attenuated response h(n) at ear drum
with an all pass tail to make the entire spectrum flat:

0.1 :
|
9 A Extended impulse
2 . :
% response with all pass tail
<
ISC"IMIO‘H | Allpass tail
response |
_02 1 1 1 1 1
0 2 4 6 8 10
Time (ms) ol .
% 10_ ..................................... ._‘ .............................. ............
§ %f = X
All pass system S e -
magnitude g 0l =i opiiii N
< 7l|—Allpassresponse | T ]
50H - - - Isolation response ' e ' : U
100 1k 10k
Frequency (Hz)

[R&mo and Valimaki, 2014]
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Type Il — Adaptive Hear Through

e Adaptive equalization of acoustical transparency for In-
ear headphones to estimate isolation curve online and
apply hear through EQ

’ Adaptive isolation
estimation
/

- o e

Xexr _ | Allpass
7| filter

@ Xint DC
[ Q Q | ™ blocker

\V

Hear-through

¥
Distur-
»| bance

detector

equalization

Volume & EQ
user controls

EQ

Xext Mic

Ambient sound

Lchwarp h, FFT

» inVerse

LB e

EQ

—————— -

Hear-
# through

signal

[Juho et al, 2016]
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Type lll — Adaptive Hear Through - Results

)
=
L
=
2
=
=10
3
=
100 300 1k 3k 10k
Frequency (Hz)

Measured Isolation (dashed red) Vs
Estimated Isolation Curve (solid black)

— 2
s I

Magnitude (dB)
S o

-20 : ' :
100 300 1k 3k 10k
Frequency (Hz)

Measured Isolation (dashed red) Vs
Estimated Isolation Curve (solid black) for
non-ideal direction (75°9)

20
3B 10}
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Target Open ear responses (dashed red) Vs
equalized HT responses (solid black)
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—
=
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=
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Effect of automatic EQ on poor

headphone fitting. Fixed EQ (Solid blue) Vs

Automatic EQ (Solid Black)
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Type IV — Closed-back Design

e Closed back ear cup design with internal and external
microphones

Type IV Design Prototype using Sony MDR 1000 XZ

Internal microphone used as error microphone for virtual sound adaption as
well as hear through. External microphone used as reference microphone to
capture real sounds and for hear through coupled with internal microphone.
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Type IV — Closed-Back Hear Through using FXLMS

Fexi(N) d(n)

/

u(n -
s(n) L» Nhp(N) | 2
hinp(N) L‘
() > FXNLMS [
rine(n): Real signal attenuated through d(n): Desired reference real signal,
headphones at m;,;
Toxt(n): Real signal captured at m,,; s(n): Hear Through EQ filter

Hear through EQ filter is tuned to minimize the error signal due to difference
between desired reference signal and processed EQ signal.
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Type IV — Closed-Back Hear Through using FXLMS

Rewriting ideal EQ filter: S(f) = - H(;ce;}gf) 7 _ II{_Iear((]]:))
ext hp hp

Accounts for directional H,,(f)
pinnae cues. Can be Hour () = ref

modelled by measuring / Hext (f)
transfer functions at two A
microphones Mipt 7

Rewriting desired signal: d(n) =rn) x hyer(n)

= 1(n) * heye(n) * hegr(n)
= Toxt () * Regr ()

Desired signal can be equivalently expressed as
Toxt () passing through a directional filter h,g,-(n)
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Type IV — Closed-Back Hear Through using FXLMS

lexe(N) > Near(N-A)
f d(n)
u(n) -
»  s(n) > hp(n)

ﬁhpv(n) L‘

A:  Minimum estimated group delay of secondary path
Un-equalized response: Heyt (f)Hpp(f) + Hine(f)

Equalized Transfer Function: Hexe (f)S(f)Hpp(f) + Hine ()

Closed-back hear through EQ can be computed:
(1) If Directional transfer function, h,4,-(n) is known (can be modelled), And
(2) Introducing a minimum delay in primary path to ensure EQ can converge
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Type IV — Closed-Back Hear Through Results
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Type IV — Closed-Back Hear Through Results
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Type IV — Closed-Back Hear Through Results
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What’s next...

e Hear Through EQ may also vary for different source
incident directions
o One fixed average EQ Vs group of EQs

e Diffuse sound field or multiple real sound sources
scenarios

e Headphone isolation can be highly idiosyncratic
(especially for closed-back headphones)

e Perceptual evaluation of localization and timbre quality
of hear through mode

e Subjective impression of comb effect due to leakage of
real signal
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Natural Listening in AR/MR - Summary

Type | —

Open ear

Type Il -
Open-back Over ear

Type lll —
Closed in-ear

Type IV —
Closed-back Over ear

Heard as is — Only higher
Real sound : : :
. No processing  frequencies may be Recorded, processed for entire spectrum
reproduction :
required compensated
Natural until mid- Non-natural listening, . :
. Non-natural listening,
Natural frequency, pinna strong comb-effect e :
. .. : . . e No fitting issue, pinna
Characteristics listening, No cues preserved if due to fittings issue,

obstruction

passive HT, comb-
effect if active HT

cues to be embedded

inna cues preserved )
P P for active HT

for active HT

Personal micro- Over the ear In ear Over the ear
\TRIEIRYGIV (e M8 speaker used — emitters used — emitters used — emitters used —
reproduction Open ear Open ear Blocked ear canal Open ear
listening listening effect listening
Low volume, High volume, .
: . Personalized
poor bass, No personalized Generic EQ

Characteristics FRCUNGIEEI0F

headphone EQ

headphone EQ

Leakage, natural mixing, good
externalization, only AR/MR

High volume, proper mixing required, poor
externalization, VR/AR/MR
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C.6 Acoustic Environment Estimation and Rendering

e Critical for virtual objects to sound discernible from
real sounds in an augmented reality environment
(ARE)

Local Environment

- O

e Acoustic environment characteristics must be
captured and embedded into the binaural playback

: ;B . : Reverb ‘
| ‘ Mlm + \% =  Natural Listening AR audio

L : ReverbDelay
Local acoustic environment Binaural render
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Acoustic Environment — Room Impulse Response

e Characterized by room impulse response (RIR), which
accounts for sense of environment to listener:

D

Amplitude (dB)

Time

- < > <
Direct  Early Refl. Late Reverb

e Three major components of RIR:
o Direct Sound: Straight path between Source and Receiver
o Early Reflections: Sparse first few reflections from source
to receiver

« Reverberations: densely populated reflections (best
described statistically)
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RIR — Energy Decay Curve

e Energy decay curve (EDC): signal energy remaining

In RIR at time t [~ R(@)dr

fooo h2(t)dt
e Reverberation Time (Tgg): Time when EDC crosses
-60 dB

EDC(t) =

0

ok N

|
5]
=

Energy decay curve (dB)
A
=

8 .Reverb_ération_Tirrje_(T_60)_ NG

™

0 02 04 0.6 0.8 1
Time [s]
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RIR — Energy Decay Relief

e Energy Decay Relief (EDR): EDC generalized to
frequency bands Jot, 19021

« Used to calculate frequency dependent reverberation
time using linear curve fitting

[7h(, fdr
J, R2(r, f)dT

EDR(t,f) =

magnitude (dB)
magnitude (dB)
.
=]

10 time (s)

frequency (kHz)

frequency (kHz)

Measured EDR Modelled EDR 50t and Lee, 2016]
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RIR — Schroeder frequency

e Frequency response of RIR can be divided into two
regions:
« Sparsely distributed low frequency resonant modes
« Densely populated resonance modes

e Schroeder frequency defined as transition frequency
between the two regions: [Schroeder, 1962]

T60
Fc = 2000 /—
¢ V —30}

Bathroom V = 10 m3, T, = 0.35s
Fc =374 Hz

Example:

ude [dB]
d
=]

Amplit

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module C 16t Apr. 2018 C.55 /95



Environment (RIR) rendering approaches

e Physics based rendering: Akin to simulating visual
reality. Use computer aided model of environment to
compute impulse response.

« Wave Based theoretical methods: Numerically solve wave

equations for sound using FEM, BEM, FDTD etc. Very close
to what would we measure.

« Geometrical Acoustics: Discretize sound waves as rays and
use geometrical approximation of wave equation, image
source, ray tracing, beam tracing etc.

e Perceptual based rendering: Synthesizes an impulse
response with perceptual impression similar to real IR.
Artificial reverberation based model of real IR.
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Wave Based methods

e Highly accurate method and closest to what we

measure from physical world &p At Bt
¢ Solve Helmholtz Wave Equation 9%* ’

Wave Based Methods Summary

Finite-Difference Acoustic space is discretized in uniform spaced and shaped mesh
Time-Domain * Second order partial derivatives using finite differences in time domain
(FDTD) Straightforward and simple to implement

* Volume of the acoustic space is discretized into arbitrary shape and size
Wave equation is solved numerically using PDEs

Closed/interior areas are best solved using FEM

* More accurate than FDTD but computationally more demanding

Finite Element
Method (FEM)

* Discretize only boundary of acoustic domain and sound propagation is

Boundary defined at the boundaries
Element Method . . N
(BEM) Surface integral of the pressure and its derivatives are solved

* Not limited to closed space modelling unlike volume based methods
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Wave Based methods

If they are the most accurate, then why don’t we usually use these
methods for real-time acoustics simulation of any environment?

e Because they are Compute intensive & f4

e Most of the cost spent on high frequencies, where we don’t
care about so much details

e Too expensive for real-time computation and some
approximation is required

e Recent fast techniques shows significant speedups incorporating
moving sound sources and listeners [Raghuvanshi et al, 2009,2010]

e Current limitations:
« Static Scenes and high memory requirement
« Low frequencies up to 1.5 kHz for medium sized room
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Geometrical Acoustics: Image source method

e Source reflections are created using image

equivalence ”,

e Start from Source -> /‘}\
Reflect against all rigid ) A R 4
walls -> Check for listener \* ,,,,,,,
visibility -> Reflect image \©>'"
sources -> And so on...

e Accurate but number of image sources increases
exponentially after first few order of reflections ->
Truncated

e Wall surfaces are assumed to be smooth i.e., only
specular reflections are allowed
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Geometrical Acoustics: Ray Tracing

Direct sound path between source Early /Specular reflections Reverberations
and listener (multiple sound paths due to reflecting (Have no direction & densely
(distance attenuation) surfaces) populated)

\W/

Immerswe audio output Diffraction (occlusion effect) Diffuse reflections
(Binaural rendering applied to (Sound reflects around object (Scattering due to roughness of
provide natural listening) edges and changes phase) the surfaces)

Sound waves (aka. approximated as sound rays) bounces off with walls and objects
(represented as triangulated 3D mesh) and reaches listener’s ears accounting for
human head acoustics model
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Demo scenes

Acoustics reflections of
different material
surfaces produces
realistic sound effects.

Room materials effect

Acoustics reflections of
occluding objects »
(diffraction) gives the
impression of real-life
situations.

Occlusion effect

[Source: Immerzen Labs Pte. Ltd. Singapore]
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Perceptual Methods

e There are too much details in physical methods

e If physical accuracy not required, perceptual methods
are better alternative

e To simulate what is perceptually important NOT
physically
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What factors are perceptually important

e Early Reflections
« Spaciousness, envelopment and apparent source width

Dependent on source and listener position and orientation
Image source or Ray Tracing is used widely

e Late Reflections

Reverberation Time, T¢o(f) -> gives impression of size

Direct to Reverberant Ratio -> Affects source-listener
distance perception

Echo density -> Tells about texture information of
environment

Modal density -> Necessary for natural sounding reverb
Can be modelled stochastically
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Schroeder Reverberator

e First digital reverberator using comb and all-pass filter

parallel comb filter

x[n] y[n]
Wi -llll 7 -1115 7 -1116
| N N

AF
AF

_~1
o . e
ol =] &6

series allpass filter

| 1 Echo density
- | A
Modal density

Wb

I~
]
L
o=
=
[ O]

02 /\

L

I dA

1
~J
£3 Decay time
-y Air absorption
— 1
o
[Schroeder, 1962; Gardner, 1998]

16t Apr. 2018 C.64 /95

Natural and augmented listening for VR,AR/MR: Module C

WS Gan, JJ He, R Ranjan, R Gupta



Feedback Delay Network (FDN)

e Generalized version of Schroeder Reverberator

e Desigh methodology:
1. Design lossless prototype with infinite reverberation time
2. Add losses (absorption) to each delay unit to obtain

desired T . M:T
60 (f) 20 IOglO |G,(ejwt)| — _60 l
b . o Teo(w)
3_ z1(n) Y
u(n) _._bp_>@ R T 2
b T LEB(n_) ,—M “ [
E(z)
<] q11 q12 413
N
P \192 721 G22 (23 y(n)
~J 431 432 433
g3 J

[Jot and Chaigne, 1991]
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Scattering Delay Network

e Approach in between delay networks and physical
models

e One node per reflecting surface

e Approximation of image source method
[5]

5]
l-order reflection

[Karjalainen et al., 2005; Sena et al., 2015]
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Scattering Delay Network

e Approach in between delay networks and physical
models

e One node per reflecting surface

e Approximation of image source method
[E] [5]

l-order reflection ll-order reflection

[Karjalainen et al., 2005; Sena et al., 2015]
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Scattering Delay Network

e Approach in between delay networks and physical
models

e One node per reflecting surface

e Approximation of image source method
[5] 5] [S]

p

5 =] 5]
l-order reflection ll-order reflection Another |l-order reflection

[Karjalainen et al., 2005; Sena et al., 2015]
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Environment Rendering Methods - summary

¢ Wave Methods:

« Infeasible for high frequencies

e Geometrical Acoustics

« Image source:
* Only possible for early reflections. Usually combined with ray
tracing for accuracy
« Ray Tracing:
* High frequency approximation
* Choice of number of rays and size of source & listener is critical
* One may not be able to find all reflections

e Perceptual Methods

« Late reflections can be modelled stochastically using
FDN/SDN

Hybrid method: Wave(Low frequency) + GA(High Frequency, Early & Late
Reflections) /Perceptual Methods (Late Reflections)
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Environment Rendering: Summary

Speed/Load Accuracy Interactivity
Wave Based Slow, Very high Excellent Yes
Geometrlcal Very fast, Very good at high frequency, Ves
Acoustics at low frequency
Hybrid

Wave(LF) + GA(HF] Fast, Very good Yes
FDN Very Fast, Low Poor No

SDN Very Fast, Low Yes
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Acoustic Environment Estimation

Local Acoustic environment
Estimation

| I=|

3. Artificial

4. Room
identification based

1. Geometrical 2. Binaural

acquisition based

reverberation

recording based
based

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module C 16t Apr. 2018 C.71 /95



Geometry Acquisition and Acoustics Processing

e Geometry acquisition provides 3D mesh of the real
space to be used by GA methods

* Geometry Triangulation
EpiBlanimetsiddiabsse } * Geometry artefacts repair

* Manual measur'emen’-cs  Acoustics simplification (LOD
* 3D depth scanning with based)

semantic estimation

Geometrical Acoustics Processing

For AR, dynamic changing scenes need to be captured instantly,
processed, and rendered in real-time
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Using 3D scanning

¢ 3D depth sensing technology can provide an
approximate 3D mesh of local environment geometry

_ Source: microsoft.

3D scanning devices* 3D spatial mesh of environment

* Consists of stereo vision and depth sensing technologies
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Current challenges for GA processing

e Geometry scanned are usually not perfectly closed

o Cameras are usually placed B P %
in center of room and thus,
cannot capture hidden
objects/surfaces in space

o Dynamic moving camera can
solve this issue partially

¢ Holes and gaps in the scanned mesh must be repaired

e Acoustics processing doesn’t require as much detail as
in visual processing

o Mesh must be simplified and acoustically insignificant
details can be removed

[Milos et al, 2013; Lukas and Vorlander, 2016 ]
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Surface Recognition for Acoustical Simulation

e Acoustic properties of surfaces(walls) is quite critical
in perception of environmental type

e Geometry acquisition provides very detailed surfaces’
data -> Use it to identify surface type

e This depth information combined with RGB data can

be used by material recognition algorithms
[David, et al 2012]

e Can also be used for complex surfaces like porous
materials, rough surfaces etc. allowing more natural

sound phenomena like scattering
[Milos et al, 2013]
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Surface Recognition for Acoustical Simulation

e Machine learning based approach applied to vision

e Based on extremely randomized trees approach using
sub images for robust image classification

gravel parquet wood tiling carpet lino

100
gravel
parquet
wood
tiling
carpet
lino
0

Random trees based on sub images Confusion matrix for different ground materials

[M. Raphael et al, 2005] [David, et al, 2012]
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Acquisition using “finger snaps or claps”

e Finger snaps or claps used as excitation to capture
instant BRIRs using microphones on MARA headset

e BRIRs extraction applied on windowed samples of
band-pass filtered (1.5-3 kHz) microphones signal after

finger snap detection

[Hannes, and Lokki, 2009]

Extract

MARA
input

B

BRIR

R

Finger snap
detection

L J

Extract

Virtual sound,

* convolution

N

Input signal

talker etc.

. (monaural)

1

BRIR

» convolution

Binaural
output

Extracted BRIRs response will be colored due to non-flat snap signal
spectrum. Other excitation methods with more flat spectrum can be used
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Local Environment adaption — Statistical Approach

e Diffuse reverberation model (independent of source
and listener) as Reverberation fingerprint

e Reverberation fingerprint of a room:

« Reverberation Time,T;y(f) : derived as linear curve fitting
on modelled EDR extrapolated back to time of emission

EDR(0, f)
« Room Volume, V: Estimated from initial power spectrum
P(f) (< 1/V)
e Advantage: Just information of frequency dependent
reverberation time and room volume required

[Jot and Lee, 2016]
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Using Reverberation Fingerprint to match local room

(a) Reference (b) Local

2001
40t
-60

80 F

100 ' .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
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Using Reverberation Fingerprint to match local room

(a) Reference (b) Local

2001
40t
-60

80 F

100 ' ' .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

(c) Adapted — reverb only

Vref

local

e Correction of time-frequency
envelope using per frequency dB
offset

e Initial power offset

‘”\MMM\..IM i, ;;

0 50 100 160 200 250 300
time (msec)
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Using Reverberation Fingerprint to match local room

(a) Reference (b) Local

2001
40t
-60

80 F

-100 -
0 50 100 180 200 250 300 0 50 100 150 200 250 300

(c) Adapted —reverb only (d) Adapted — full

40 b

dB

80+

80+

) . AT :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
time (msec) time (msec)

00
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How to obtain Reverberation Fingerprint?

¢ In an augmented environment, user can be in a space
characterized by different acoustic properties

e On-the-fly acquisition using existing audio signals to
define Reverberation Fingerprint to be further used for
rendering

e Blind estimation of room acoustic parameters of a
unknown environment using speech signal

Reverberation |
Online estimation of i
E R A i Time, Teo (f) - Reverberation/
= Ed ol AR Room Fingerprint
. Features Room Volume, V
Speech Recording B

[Murgai et al, 2017]
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Reverberation Time Estimation

Energy Envelope Decay Start/Stop Decay Time Tr(f)
Estimation Detection Estimation

Cafeteria Bogota - T60 Comparison Octogon Room, Queen Mary - T60 Comparison

—Actual ~ — Actual

—‘_—q~4 = =Blindly Estimated | & 3 = =Blindly Estimated ||
o o)
c c
8 825
D3 @
a @
] @
£ £ °
[ [=
> 1.5
Q o
@ 1
o o 1/
0 0.5
10 10° 104 10 10° 10
Frequency(Hz) Frequency(Hz)
0 55St'.tum:l Lab, University Of Athens - T60 Comparison E‘S|:u:w'l:s Centre, University of York - T60 Comparison
’ —Actual — Actual
- 05 = =Blindly Estimated | - = =Blindly Estimated
o . e 6
c c
<} <}
[4] [&]
30.45 g{
1] @«
= g4
CLIERN =
= N =y
] N/ \ B2
2035 . — 3
N
10? 10° 10 10° 10° 10°
Frequency(Hz) Frequency(Hz)

[Murgai et al, 2017]
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Room Volume Prediction

Speech impulse
response
Estimation

Acoustics features GMM based
extraction volume prediction

Te0, C80, Cs0, density of
early reflections, kurtosis
(t), density of low
frequency room modes,
and kurtosis (f).

1000

True Volume

= = Predicted Volume
900 | .

Amplitude
Room Volume (ma)

=

—— Audio Signal
— RMS Level
== = Stop Locations

0 1 2 3 4 5 6
Time (S) Prediction

[Murgai et al, 2017]
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Room ldentification using Acoustic Features

Training of known rooms Identification of unknown rooms

Known room recordings Unknown room
(speech, music, combined) recordings

a4 4

Audio features extraction

(MFCC, spectrogram)

Audio features
extraction

¥

Compute likelihood score for unknown

GMM based room training feature vectors with each room model

Return room with highest
Room model database likelihood score

[P. Nils et al, 2016]
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Environment Estimation and Rendering - Summary

Output of Environment
Environment Estimation Estimation method R Suitable Environment
Methods Rendering approaches

¥ ¥ ¥

Geometrical acoustics
(Image source + Ray Tracing)
or Wave + GA methods

3D geometry mesh with

Geometrical acquisition .. :
semantic information

Binaural room impulse

response (BRIR) BRIR convolution

Binaural Recording

Artificial Reverberation Reverberation fingerprint FDN/SDN

Room Identification using

. Room models database Pre-stored RIR convolution
acoustic features
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C.7 Signal Processing Techniques Integration for AR/MR

----------------------------------------- T St uimtn R St Headphone
| |
Head e ) Rendering of natural sound : Hearing aids
Head tracking ,
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e Acoustic Transparent hearing using
passive/active hear through

¢ Headphone equalization for virtual sound
rendering with adaptive estimation for real
sounds

e Environment rendering
e Acoustic environment Estimation
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Module D

Summary and Future Trends

Summary of key Techniques

Spatial Audio Tools

Emerging (potential) Applications of VR/AR Audio
Challenges and Future Research Trends

-



D.1 Spatial Audio Technologies for Immersive VR, AR/MR

ﬂ_ 2 =
L 4

Spatial Audio Formats
* Object, Ambisonics
Parametric processing

Individualized Binaural
Rendering
* |Individualized HRTFs
Equalization

Dynamic Binaural Synthesis
* Head tracking
* Position tracking
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Summary: Different Listening Modes for VR and AR/MR
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D.2 Binaural rendering tools

Common Features

Inclusion
S. No. Tool Name Input format of custom Auralization Unique features
HOA FOA Obj. HRTF Artificia! Physics b.ased
allowed reverberation simulation
1 Steam Audio [1] X X X X X Audio occlusion effects., real time sound
propagation
5 Resonance Audio [2] X X X Near field effects,‘occlfjs.ions, sound
source directivity
. X Real time motion tracked binaural
3 Dyasonics [3] X playback while editing
4, Oculus [4] X X X Volumetric sources, near field rendering
Supports FOA and unlimited number of
5. Gaudio SOL [5] X X X virtual speakers using proprietary GA5
format
6. Super-powered [6] X X X low latency VR and mobile solution
supports mix to other formats such as 5.1,
7.0
7. Nx Audio [7] X X X X allows tuning of HRTF using head
measurements,
EQ calibration for headphones supported
8. DearVR [8] X X Allows 3D sound object design inside VR
allows custom HRTF tuning using
9. Real Space 3D [9] X X X anthropometric measurements and user
selected HRTF playback in real time
Headphone Optimization tech,
10. Dirac VR [10] X X X Dynamic HRTF incorporating relative
head-torso movement
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Spatial Audio Tool References

Companies | Websites
EP VI (1] SteamAudio - https://valvesoftware.github.io/steam-audio/

M [2] Resonance audio- https://developers.google.com/resonance-

Resonance Aaudic  gudio/develop/unity/developer-guide
(®) mm [3] Dyasonics Rondo360- https://dysonics.com/rondo360/
pysonics [0/A10.0

—— Oculus —  [4] Oculus- https://developer.oculus.com/downloads/package/oculus-audio-
Audio SDK sdk-plugins/1.1.0/

(_'.;AUD|@ [5] Gaudio - https://www.gaudiolab.com/resources/download/works

SUperpowered [6] Superpowered- http://superpowered.com/3d-audio-spatializer-
ambisonics-vr-audio

Avivt VXL [7] Nx Audio- https://www.waves.com/nx

WAV ES
3D audio for any headphones

dea r\/R [8] DearVR http://dearvr.com/

3D audio reality engine

RealSDBCEB@ [9] Realspace 3D- https://realspace3daudio.com/

E Dir‘ac [10] Dirac VR https://www.dirac.com/dirac-vr
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https://valvesoftware.github.io/steam-audio/
https://developers.google.com/resonance-audio/develop/unity/developer-guide
https://dysonics.com/rondo360/
https://developer.oculus.com/downloads/package/oculus-audio-sdk-plugins/1.1.0/
https://www.gaudiolab.com/resources/download/works
http://superpowered.com/3d-audio-spatializer-ambisonics-vr-audio
https://www.waves.com/nx
http://dearvr.com/
https://realspace3daudio.com/
https://www.dirac.com/dirac-vr

D.3 Emerging Applications of Spatial Audio for VR, AR/MR

1. Spatial Audio Communication & Collaboration
2. Augmented Audio Tour

3. Augmented Assistive Listening for Visually
Impaired

4. Soundscape Studies
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1) Communication & Collaboration using VR and AR/MR
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VR/AR/MR mode

Airport Bedroom
) U;uql]y large ha}II *  Usually small-medium
»  Significant ambient sound

sized room
*  Quiet environment

Meeting Room
*  Enclosed room with
reverberant characteristics

Required Audio Technology
Environment estimation
Adaptive Filtering

ANC mode may be
required if loud external
noise

Reverberation Rendering
Dynamic Binaural audio

Illustration by Santi, image credit: Freepik.com
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2) Augmented Audio Tour

eleome to virtual audio
tour of world war memorial

4

Bose AR:
Audio Augmented Platform
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3) Augmented Assistive listening for Visually Impaired

1=
\
—
[ | s
-llg!

...ll.fm_:ll

i |
|

[ 1 1 =l
o
][]

P 1] (=)
ll.- \
L v

mu

e —
J P

7
i
I\ 1

7
[
:
i
I

1
o

WS Gan, JJ He, R Ranjan, R Gupta Natural and augmented listening for VR,AR/MR: Module D 16t Apr. 2018 D.9/29



Safety Headphones

W e v -

MES-—*
FMAiTE

First mobile phone
sidewalks in China
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: PN
Assistive Listening is also needed for the normal
person!
®
STOP >
§ Fred Jiang
§ Columbia
g University, USA

FIGURE 4. The proto intelligent pedestrian safety headset and connected smariphone. . . . .
e o % Picture from |IEEE Signal Processing Magazine, March 2018
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4) What is Soundscape?

e Paradigm shift in urban sound evaluations from ‘Noise control’ into
‘Soundscape design’

Airplane

= Soundscape (ISO/TC 43 SC1: DIS 12913-1)
= Acoustic environment as perceived or experienced and/or
understood by people, in context

=" The challenge is to create good and health-promoting soundscapes
in urban environments.
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Selected previous studies

- Sound field behind different noise barriers calculated and
auralized through VR

Fig. 5. Four noise barriers and sound environments proposed.
VS1: common rail. no sound barrier. VS2: concrete opaque, 1.2 m barrier. VS3: concrete vegetated with upper
part in glass, 2 m barrier. VS4: concrete opaque with oval windows, 3 m barrier.

[Sanchez, 2017]
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Selected previous studies

 Use of web-based PC and VR spatial sound tool for auralization of

soundscapes
* Study found no statistical difference between evaluation in-situ and

VR

Visualisation Auralisation
Data: Data:
GISdada Synthesised signals
On-site photos Anechoic recordings
Downloaded textures On-site recordings
Downloaded recordings :
l l Case Site: Piazza Vittoria, Naples, Italy
3D modelling and
Animation Audio processing and
(AutoCAD, SketchUp, editing fa:;c’ﬂ:roefc’::’lf User |nterface
3ds Max) (REAPER, Adobe Audition) P "9 (Unity)

Introduction

Audio calibrati Audio callbration

and rende'ring
(Unity)

Evaluation tasks

.......
------
-----

e

TICT

C P e S R e e WebGL and Unity Web Player games
Virtual environment and evaluation tasks for participatory evaluation

Fig. L. of the devels of the d toal.

[Jiang, 2018]
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Overview of Our Augmented Urban Soundscape

Aim : To develop AR/VR design tools for soundscape design
and evaluation

STEP 1 STEP 2 STEP 3
Capturing Psychoacoustic Design
Urban Soundscape Evaluation Parameters of
In SGP Based on AUS System

VR/AR

i

+ 3D Audio-Visual Recording « Psychoacoustic evaluation using VR and AR * Design parameters for AUS algorithm
» Capturing pleasant masker sounds «  Developing optimal masking algorithm « Aid in design of AUS in Phase 2
* Analyzing psychoacoustic indicators
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Capturing of Urban Soundscape

* 3D audio-video for VR e Psychoacoustic indicators
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Psychoacoustic Evaluation using VR

¢ VR scenario

Laboratory condition (Controlled)

VR Headgear ‘
Road traffic ™ wg
..(Recorded) g

e
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Video Demo: Spatial Audio for VR
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Psychoacoustic Evaluation using AR

¢ AR scenario

In-situ (Real-life scenario) by
g:_-.._‘ <

Augmented Reality
Headgear

B e N - bk [ e n A
ol £ R = ool ¢ = Masker
- R0ad traffic g g I S AMasker)  ( )

(REEV

Hologram & <-=g---=
Sound source I

3D Spatial Audio :
Headphones
(Open-back)
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Video Demo: Spatial Audio for AR/MR

Augmented Reality

(Soundscape with static & movable

masker in Yunnan Garden)
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Summary of Audio Techniques for Soundscapes

Table 3. Recommended audio reproduction and recording techniques for virtualizing/augmenting

acoustic environments.

Characteristics of the Acoustic Environment

Recommended Techniques

. Movements Virtual Sound . . Use Case(s) {Selected
Spatial Type of . Reproduction Recording .
L2 o . Listener Source . . References, if Any)
Fideli? Environment:? . ead L. Techniques Techniques
Position # Localization 2
Mono Masking road traffic
Virtual (R/S) x = oD loudspeaker; Mono noise with
stereo headphone birdsongs [99]
Reproduced acoustic
Stereo/surround Stereoy environment [25];
Virtual (R/S) x = 1D loudspeaker; Perceived
surrotind .
stereo headphone restorative-ness
Low .
soundscape scale [71]
Surround sound
loudspeakers with Array
i height
Virtual (R/S) * ® 2D .
Perception of
Ambisonics (2D) Ambisonics reproduced
soundscapes [22]
Auralising noise
N . mitigation measures
. Ambisonics; Ambisonics; ! R R
Virtual (R/5) - * 3D~ Binaural Binaural; [100]; Masking noise
with water
sounds [101,102]
Med -
i Personalized
: Personalized i
Virtual (R/S) x ® 3D+ binaural (PB) 5 binaural;
Ambisonics §
i Binaural/PB with i .
v
Virtual (R/S) 3 3D+ head tracki Ambisonics
WES; Binaural/PB Mono
Virtual(S) v v 3D+ with positional & (anechoic); LISTEN project [103]
Hi head tracking Ambisonics
gh WES; Binaural/FB Mono
Real + ) . ; Augmented
Virtual(S) 7 v v 3D+ with positional & {anechoic); 4 -9
) head tracking Ambisonics soundscape [27,97]
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D.4 Challenges of Spatial Audio for VR, AR/MR

o Audio format for VR/AR/MR (ambisonics vs object)
o Audio reproduction system (headphones vs speakers)

0 Low cost and effective HRTF individualization method
(including measurements) for consumer adoption

o Basic Audio Quality (Spatial and Timbre quality) vs
Overall Listening Experience using Spatial Audio in
VR/AR/MR

o Distance rendering (including near-field)
o Latency in dynamic binaural rendering
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D.4 Challenges of Spatial Audio for VR, AR/MR

a Plausible hear through of real sound in AR/MR

0 Real-time interaction of virtual audio in dynamic real
environment (AR/MR), including the efficient
methods for estimating environment acoustics in real-
time (indoor and outdoor)

o How Al/machine learning can help:
v Audio scene recognition for making informed decision
v Individualization of HRTFs using photos
v Environment estimation
v Assisted listening
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Holy Grail in Spatial Sound

“The holy grail in truly immersive 3D sound is real-

time customized spatial audio that is calibrated to the
anatomical measurements of one’s ears and uses
head-tracking technology to update the soundscape
as one moves their head around. “It really becomes
real to you, and vivid, if it feels like you’ve been
immersed in a new, living acoustic reality;” “You feel
like you’re somewhere else. ”

From sound installation artist, Gabe Liberti

-
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(Contains supplementary and updated materials of this tutorial)

http://eeewebc.ntu.edu.sg/dsplab/ewsgan/ICASSP2018.html
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ICASSP ‘18 Demo

 Title: An fast iHRTF Acquisition and Immersive 3D Audio
Headset for Virtual and Augmented Reality (ID #21)

* Date/Time: Wednesday, April 18th, 13:30pm-15:30pm
* Venue: Exhibit Hall Foyer

: 3
J A
- d \
LEs 1st version of the iIHRTF ACQ unit AD -

29 demoed in ICASSP 2017 \

2nd version of real-time iHRTF ACQ-Spatial Audio
Rendering Unit
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