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@ Hearing is for getting information from sound
@ Environmental sound recognition is fundamental
@ ‘Events’ are what we hear and notice

@ What and when?

D. Ellis,"Recognizing and Classifying Environmental Sounds,” in CHiME workshop, 2013
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Audio Event Detection (AED)

Oracle AED output

e AED Task
@ What type of events? Where in time do they happen?

time

@ Approaches

o Detection-by-classification: DNN [McLoughlin et al., 2015],
CNN [McLoughlin et al., 2017], RNN [Parascandolo et al., 2016],
CRNN [Cakir et al. 2017], etc.

e Joint detection and segmentation: GMM-HMM [Mesaros et al., 2010;
Heittola et al. 2013], etc.

o Onset and offset detection: Regression Forests [Phan et al., 2015],
Classification-Regression Forests [Phan et al., 2016], etc.

Many of previous works focused on detection of entire audio events



Early Event Detection in Audio Streams
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H. Phan, M. Maass, R. Mazur, and A. Mertins,“Early Event Detection in Audio Streams,” in Proc. ICME, pp.
1-6, 2015.
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Early Event Detection in Audio Streams
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o Early detection of ongoing events with their partial observation

o Reliability: Early detection without losing detection performance
= Requiring the monotonicity of a detection function

H. Phan, M. Maass, R. Mazur, and A. Mertins,“Early Event Detection in Audio Streams,” in Proc. ICME, pp.
1-6, 2015.
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Dual-DNN Detection System
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DNN-1: Background/Foreground Classification

@ Weighting loss:

N
En(0) = —% <)\fg Z It (X1)yn log (F1 (X , 6))
n=1

N
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o Ipg(x): Indicator function, 1 if x
is background and 0 if not

o I (x): Indicator function, 1 if x Output DNN
. . layer output
is foreground and 0 if not

softmax
y— 3

o Afg: Penalization weight for false
negative errors

o Apg: Penalization weight for false
positive errors



DNN-2: Joint Event Classification & Boundary Estimation

o Multi-task loss:
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DNN-2: Joint Event Classification & Boundary Estimation
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Inference

@ Given an audio frame x,, at time index m, the confidence score that
a target event class ¢ occurs at n:

| P(1|xp) P (c|xm) if neROI
fe(n|xm) = { 0 otherwise

o Py (1|xy,): Posterior prob. for x,, classified as foreground by DNN-1
o P (c¢|%,): Posterior prob. for x,, classified as class ¢ by DNN-2

o 1 € ROIif m — don(Xm) < 1 < m + doff(Xm)

@ The accumulated confidence
score given all audio frames:

fc(n) = Z fc(n | Xm)

m
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Inference

Detection Function’'s Monotonicity

@ Assume the accumulated confidence score at index n > 0 given all
frames up to index m > 0:

m
fa(n) = Y f(n]xm)
m=1
@ The updated confidence score when the new frame m + 1 is observed:

m+1

frn—‘rl TL an|xm anfxm —|—f(n’Xm+1)
m=1

an|xm = fm(n)

m=

—

due to f(n|x,) >0, Ym >0
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Experimental Setup

@ ITC-Irst database (CHIL/CLEAR 2006)

e 1.7 hours in total
o Single microphone out of 32 microphones used
o Evaluating on 12 event categories (e.g. door knock, coughing)

@ Feature extraction
e 100 ms frame length and 90 ms overlap
e 64 log Gammatone spectral coefficients in freq. range [50, 22050] Hz

Baseline systems
o SVM: Detection-by-classification with RBF-kernel SVMs
o GMM-HMM: Joint detection and segmentation with GMM-HMM

o Reg. Forests: Onset and offset detection with Regression Forests

Evaluation metrics: Detection error rate (ER) and F1-score

10



Detection Performance (Offline)

GMM- Reg.
SVM HMM | Forests Dual-DNN
ER (%) 30.8 39.0 15.1 11.0 (} 4.1)
Fl-score (%) 83.7 84.4 93.1 95.2 (1 2.1)

o
S

o
S

Fl-score (%)
o
=1

o $€ .
R N Cox\?;o \(bo%\

H. Phan, M. MaaB, R. Mazur, and A. Mertins,“"Random Regression Forests for Acoustic Event Detection and
Classification,” TASLP, vol. 23, no. 1, pp. 20-31, 2015.

H. Phan, P. Koch, F. Katzberg, M. MaaB, R. Mazur, I. McLoughlin, and A. Mertins, “What Makes Audio
Event Detection Harder than Classification,” in Proc. EUSIPCO, pp. 2739-2743, 2017.
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Dual-DNN System

Experiments

Good and Bad Cases
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Experiments

Early Detection Performance (Online)
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Summary

Addressing early audio event detection in audio streams
@ Dual-DNN detection system with tailored loss functions

@ Inference to reliably detect and anticipate ongoing events

Good performance on the studied dataset

Early event detection capability demonstrated

14



Thank you for your attention



Early Detection Performance with Reg. Forests
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