

Speaker-Phonetic Vector Estimation for Short Duration Speaker Verification

Jianbo Ma¹, Vidhyasaharan Sethu¹, Eliathamby Ambikairajah^{1,2}, Kong Aik Lee³ ¹ The School of Electrical Engineering and Telecommunications, UNSW, Sydney NSW 2052, Australia ² DATA61, CSIRO, Australia, Sydney NSW 2015, Australia ³Data Science Research Laboratories, NEC Corporation, Japan

1. Introduction

- State-of-art text-independent system includes i-vector representation.
- Gaussian distribution is conventionally used to model distributions of latent variable for deriving i-vector representations.
- Relaxing the Gaussian assumption can form vector representations with both phonetic and speaker meaning for each utterance.
- These representations is able to perform content matching that is beneficial for short duration speaker verification.

2. Total Variability Model

✤ i-vector generative model

$$\mu_{c}^{(i)} = \mu_{c0}^{(i)} + T_{c}\omega^{(i)}$$

• Prior distribution of latent variable ω

$$p(\omega) = \mathcal{N}(0, I)$$

 \clubsuit Latent variable x and corresponding supervectors (M_i) are assumed to have Gaussian distributions.

Inference of i-vector

 $p(\omega|X) \propto p(X|\omega)p(\omega)$

3. Phonetic i-vectors Analysis

Phonetic i-vector clustering

- Phonetic i-vectors are estimated by using features belong to same phonetic class.
- Phonetic i-vector projected by PCA.
- Different distributions found for different phonetic ivectors.
- For long duration utterances, it is not a problem due to sufficient information for each phoneme.
- For short duration utterances, i-vector biased toward some dominant groups and differ from one to another, resulting in larger within-class covariance.

$$q$$
 - state variables k - state index

$$\sum_{k} \gamma_k Score(\omega_{ik}, \omega_{tk})$$

where $\gamma_k = \frac{N_{tk}}{\sum_k N_{tk}}$, N_{tk} is the zeroth-order statistics of state k.

5. Experimental Results

- group to fit the phonetic vectors

EER % results NIST SRE' 2010 8CONV-10SEC							
		Male			Female		
	System	10s	5s	3s	10s	5s	3s
1	Baseline	5.12	10.61	17.43	6.16	12.43	18.90
2	Proposed	5.34	10.26	14.26	6.68	11.54	16.52
4	Fusion 1+2	3.82	8.10	12.19	4.94	8.90	14.15
5	LV system*	4.40	8.99	14.06	5.92	11.24	15.31

- complementary behaviour.
- both single and fused systems.

* J. Ma, V. Sethu, E. Ambikairajah, and K. A. Lee, "Incorporating Local Acoustic Variability Information into Short Duration Speaker Verification," Proc. Interspeech 2017, pp. 1502-1506, 2017

6. Conclusion

- distributions of latent variables.
- condition.

The BUT group's phoneme decoder of Hungarian language is used to obtain phonetic posterior probabilities $p(q_k|X)$

Similar phonemes are grouped to form 14 phonetic groups • One Gaussian $\mathcal{N}(m_k, B_k)$ is then assigned to each phonetic

Table 1. Experimental results (EER %) of NIST SRE' 2010 8CONV-10SEC

Proposed phonetic-speaker vector representation outperformed i-vector baseline for shorter conditions.

Substantial improvements are obtained by fusing phoneticspeaker vector and i-vector systems in score level, showing

The proposed method is compared with local acoustic variability model. Phonetic-speaker vector outperformed it in

i-vectors of different phonemes are not identically distributed. This leads to i-vector representation having larger within-class covariance for short duration utterances.

The proposed phonetic-speaker vector representation is derived by introducing mixture of Gaussians to model

The proposed method is able to perform soft content matching and outperformed i-vector representation system in short