Fast Projection onto the 7 ;-Mixed Norm Ball using Steffensen Root Search
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AbStraCt P rOpOSEd mEthOd Speedup with respect to Sra
- We present a new algorithm for computing the pro- - By duality, X* 4+ A* = B, (X" is solution to (1)) where:
ot 1
jection onto theSKOOJ ball. Al .. al] = Af = _HA B2+ \- A1 (2
- Improvements: Steffensen type root search technique,
P eneen P _ : If we had v* = ||A*||1 & then the problem would be sepa- I I I I I I I I I I I I I
pruning strategy and initial guess of solution. . T, . )
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- Simulations: Average speedups of 4~5 w.r.t. state of . _ o019 e fwew o 00 0
_ _ - We define the search function
the art. Up to 14 times faster for very sparse solutions. =y b ) Figure 2: Speedup w.r.t. to Sra [2]
- fMRI LASSO task: Speedups of ~ 120. A e obe e with o(af) Results: fMRI task results
is obtained with g(~v*) = 0.
Introduction b, it ||bmllt <7 - Data from fMRI prediction of word response based on co-
am(y) =1 . . -
| | | | shrink(b,,,, A(7)) if ||by,|l1 > 7. occurrence matrix [4].
. M|xed norms are mpj\c;rt;nt in modeling group correla- . Pruning: Only the by, with [byl; > ~ contribute to the . Solve m'”QHY XW|2 s.t. W1 < 7 by projected
tions [1]. Let A € R™ >, where the rows represent the . .
_ | _ sum in g(7). gradlent descent (PGD). In each step we use our proposed
different groups. The /., 1-norm is defined as ||A||c1 = o . worith Sra [
sM_ g | ’ ’ - Problem reduces to finding v* though a root-finding pro- algorithm or Sra [2].
meL e _ _ _ cedure over g. We use Steffensen’s root search [3]: 3 =003 3 = 005 3 =0
- The main contribution of this work is a computationally _ e e I
= . . . . . . yn /yn \2/ Proposed i:/ Proposed \z/ Proposed | |
efficient algorithm for computing the projection onto the Tn+1 = %Jr%g(y Y — g(7)’ Yn = Ynt0n|9(n)| - (3) g 1o’ 2 1o° g 1o
T mn 2 2 2 |
£oo,1 ball 1 - Initial Point: Compute o, = ||shrink(by, 7)||1 for each _ng _ng ' _:gm
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(1) U< <7 Figure 3: Time per PGD iteration for solving the £, | projection problem.

- Sra [2| proposed a general root search based algorithm for Results: simulations Speedups of ~120 (10 hours — 3 minutes)
mixed-norm ball projection problems.
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(i) a feasible - Synthetic B ~ U([—0.5,0.5]) (100 realizations). Con-

straint 7 = o||B||oc.1, @ € {10—47 5% 1074, 10—3} Figure 4: Distribution of ||by||; values
(red) and optimal v value (blue). This data

- We propose two significant improvements:

initial solution, and (ii) pruning.
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distribution explains the higher speedups
obtained in the fMRI| dataset.
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- New algorithm for projection onto the ¢, ;-norm ball with
speedups of around 5 — 6 times or more. Higher speedups
with favorable sparsity conditions or data distributions.
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Figure 1: Impact of initial point




