Scheduling of Multistatic Sonobuoy Fields using Multi-Objective Optimization

Christopher Gilliam¹, Daniel Angley², Sofia Suvorova², Branko Ristic¹, Bill Moran², Fiona Fletcher³, Han Gaetjens³, Sergey Simakov³

¹ School of Engineering, RMIT University, Australia
² Electrical & Electronic Engineering, The University of Melbourne, Australia
³ Maritime Division, Defence Science and Technology Group, Australia

Australian Government

Department of Defence Science and Technology

17th April 2018

Outline

1 Multistatic Sonobuoy Fields

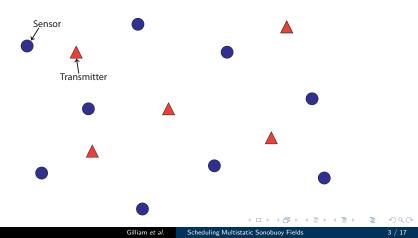
- \blacksquare Two Tasks \implies Search for and track underwater targets
- Performance dependent on scheduling sonobuoys

2 Recap on Tracking in Sonobuoy Fields

- Geometric Modelling and Measurements
- Tracking algorithm used to track targets

3 Multi-Objective Scheduling Framework

- \blacksquare Optimization Problem \implies Two reward functions
- Tracking Reward Function
- Search Reward Function

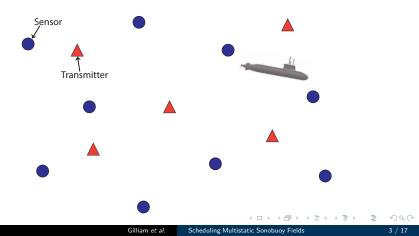

4 Simulation Results

5 Conclusions

Track & Search Tasks Scheduling

Multistatic Sonobuoy Fields

A network of transmitters and sensors distributed across a large search region

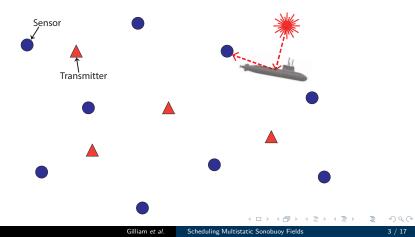


Track & Search Tasks Scheduling

Multistatic Sonobuoy Fields

Two tasks of the system:

Detect targets that are unknown to the system

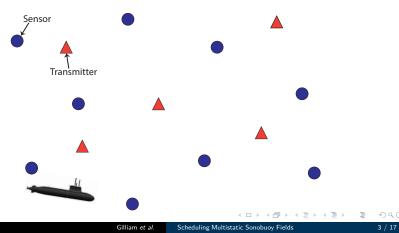


Track & Search Tasks Scheduling

Multistatic Sonobuoy Fields

Two tasks of the system:

Detect targets that are unknown to the system

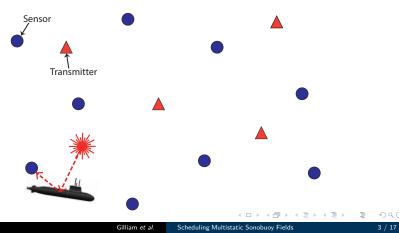


Track & Search Tasks Scheduling

Multistatic Sonobuoy Fields

Two tasks of the system:

- Detect targets that are unknown to the system
- Accurately track targets known to the system



Track & Search Tasks Scheduling

Multistatic Sonobuoy Fields

Two tasks of the system:

- Detect targets that are unknown to the system
- Accurately track targets known to the system

Track & Search Task Scheduling

Scheduling Problem

 $\, \hookrightarrow \,$ Choose sequence of transmitters and waveforms to satisfy tasks

∃ ► < ∃ ►</p>

Track & Search Task Scheduling

Scheduling Problem

 \hookrightarrow Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter: $\mathcal{T} = \{j_1, j_2, \dots, j_{N_T}\}$

where N_T is the number of transmitters in the field

Choose a Waveform: $\mathcal{W} = \{w_1, w_2, \dots, w_{N_d}\}$ where N_d is the number of possible waveforms

Scheduling Problem

 $\, \hookrightarrow \,$ Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter:
$$\mathcal{T} = \{j_1, j_2, \dots, j_{N_T}\}$$

where N_T is the number of transmitters in the field

Choose a Waveform: $\mathcal{W} = \{w_1, w_2, \dots, w_{N_d}\}$

where N_d is the number of possible waveforms

Possible waveforms:

- Continuous Wave (CW) or Frequency Modulated (FM) waveform
- 1kHz or 2kHz frequency
- 2 second or 8 second duration

A = A = A

Track & Search Task Scheduling

Scheduling Problem

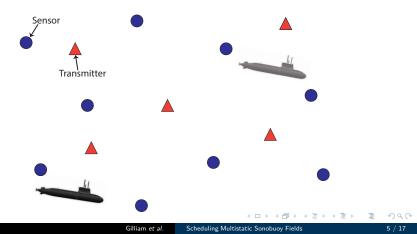
 \hookrightarrow Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter:
$$\mathcal{T} = \{j_1, j_2, \dots, j_{N_T}\}$$

where N_T is the number of transmitters in the field

Choose a Waveform: $\mathcal{W}=\{w_1,w_2,\ldots,w_{N_d}\}$ where N_d is the number of possible waveforms

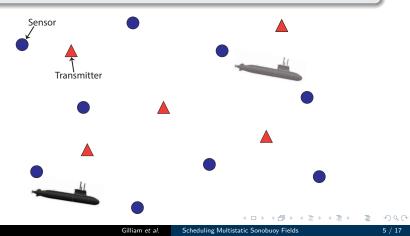

Action space:

Choose an action:
$$a \in \mathcal{A}, \quad \mathcal{A} = \mathcal{T} \times \mathcal{W}$$

Track & Search Task Scheduling

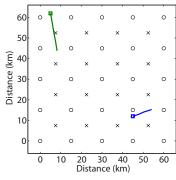
Conflicting Objectives

Track vs Search \implies Which transmitter to choose...



Track & Search Task Scheduling

Conflicting Objectives

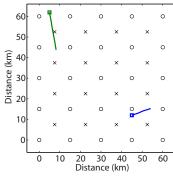

Our Approach:

Combine both tasks in multi-objective framework and use multi-objective optimization to decide scheduling

Modelling, Measurements & Tracker

Modelling, Measurements & Tracking Algorithm

'x' = Transmitters, 'o' = Receivers


Sonobuoy Field Description:

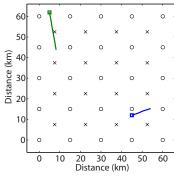
- Transmitter positions $\mathbf{s}_j = \left[x_s^j, y_s^j\right]^{\mathrm{T}}$
- Receiver positions $\mathbf{r}_i = \left[x_r^i, y_r^i\right]^{^{\mathrm{T}}}$
- Assume positions are known at all times*

*Each buoy contains RF communications and may contain GPS equipment

6 / 17

Modelling, Measurements & Tracking Algorithm

'x' = Transmitters, 'o' = Receivers


Target Description:

- Target Position at time t_k : $\mathbf{p} = [x_k, y_k]^{\mathrm{T}}$
- Target Velocity at time t_k : $\mathbf{v} = [\dot{x}_k, \dot{y}_k]^{\mathrm{T}}$
- Time-varying state $\mathbf{x}_k = [\mathbf{p}_k^{\scriptscriptstyle \mathrm{T}}, \mathbf{v}_k^{\scriptscriptstyle \mathrm{T}}]^{\scriptscriptstyle \mathrm{T}}$

∃ ► < ∃ ►</p>

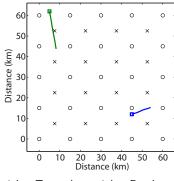
Modelling, Measurements & Tracker

Modelling, Measurements & Tracking Algorithm

'x' = Transmitters, 'o' = Receivers

Target Motion:

Noisy linear constant-velocity model

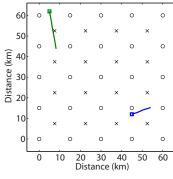

$$\mathbf{x}_{k} = \underbrace{\left(\begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \otimes \mathbf{I}_{2} \right) \mathbf{x}_{k-1}}_{f(\mathbf{x}_{k-1})} + \mathbf{e}_{k}$$

Process noise e_k is Gaussian with variance

$$\mathbf{Q} = \omega \begin{bmatrix} T^3/3 & T^2/2 \\ T^2/2 & T \end{bmatrix} \otimes \mathbf{I}_2$$

where $T = t_k - t_{k-1}$ is the sampling in time \otimes is the Kronecker product and I_2 is 2×2 identity matrix

Modelling, Measurements & Tracking Algorithm



'x' = Transmitters, 'o' = Receivers

Measurements:

- Signal amplitude β and Kinematic measurement z $\mathbf{z} = \mathbf{h}_i^{(i)}(\mathbf{x}_k) + \mathbf{w}_j^{(i)}$
- Measurements collected from a subset of receivers
- Buoys have two waveform modalities
 - Frequency Modulated (FM)
 - Continuous Wave (CW)

Modelling, Measurements & Tracking Algorithm

'x' = Transmitters, 'o' = Receivers

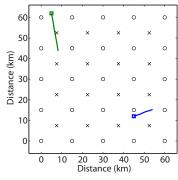
Using FM waveforms:

- Bistatic Range: $|\mathbf{p}_k - \mathbf{r}_i| + |\mathbf{p}_k - \mathbf{s}_j|$
- Angle from Receiver: $\arctan\left(\frac{y_k - y_r^i}{x_k - x_r^i}\right)$
- Good positional information

∃ ► < ∃ ►</p>

Modelling, Measurements & Tracker

Modelling, Measurements & Tracking Algorithm



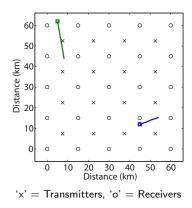
'x' = Transmitters, 'o' = Receivers

Using CW waveforms:

- Bistatic Range: $|\mathbf{p}_k - \mathbf{r}_i| + |\mathbf{p}_k - \mathbf{s}_j|$
- Angle from Receiver: $\arctan\left(\frac{y_k - y_r^i}{x_k - x_r^i}\right)$
- **Bistatic Range-Rate:** $\mathbf{v}^{\mathrm{T}} \begin{bmatrix} \mathbf{p}_k - \mathbf{r}_i \\ |\mathbf{p}_k - \mathbf{r}_i| \end{bmatrix} + \frac{\mathbf{p}_k - \mathbf{s}_i}{|\mathbf{p}_k - \mathbf{s}_i|}$
- Good velocity information

Modelling, Measurements & Tracking Algorithm

'x' = Transmitters, 'o' = Receivers


Tracking Challenges:

- High levels of clutter
- Non-linear measurements
- Low probability of detection

Many possible algorithms: ML-PDA, MHT, PMHT, JIPDA, PHD/CPHD, ... etc

Modelling, Measurements & Tracker

Modelling, Measurements & Tracking Algorithm

The tracker:

- Multi-Sensor Bernoulli filter^[1] (optimal multi-sensor Bayesian filter for a single target)
- Linear Multi-Target (LMT) Paradigm^[2]
- Gaussian mixture model implementation^[3]
- Process FM & CW measurements

B. Ristic et al., 'A tutorial on Bernoulli filters: Theory, implementation and applications', IEEE Trans. Signal Process., 2013.
D. Mušicki and B. La Scala, 'Multi-Target Tracking in Clutter without Measurement Assignment', IEEE Trans. Aerosp. Electron. Syst., 2008.
B. Ristic et al., 'Gaussian Mixture Multirarget Multisensor Bernoulli Tracker for Multistatic Sonobuoy Fields', IET Radar, Sonar & Navig,, 2017.

Multi-Objective Framework for choosing

Maximising rewards:

- $\blacksquare R_{\text{Search}}(a) \Rightarrow \text{ Reward for searching to detect unknown targets}$
- $\blacksquare \ R_{\mathsf{Track}}(a) \Rightarrow \ \mathsf{Reward}$ for continued tracking of known targets

Multi-Objective Framework for choosing

Maximising rewards:

v

- $\blacksquare R_{\rm Search}(a) \Rightarrow {\rm \ Reward \ for \ searching \ to \ detect \ unknown \ targets}$
- $\blacksquare \ R_{\mathsf{Track}}(a) \Rightarrow \ \mathsf{Reward}$ for continued tracking of known targets

Combine rewards via convex sum:

$$\max_{a} \ \left\{ \alpha R_{\mathsf{Track}}(a) + (1-\alpha) R_{\mathsf{Search}}(a) \right\}$$
 where $\alpha \in [0,1]$

A = b < = b</p>

Multi-Objective Framework for choosing

Maximising rewards:

- $\blacksquare R_{\rm Search}(a) \Rightarrow {\rm \ Reward \ for \ searching \ to \ detect \ unknown \ targets}$
- $\blacksquare \ R_{\mathsf{Track}}(a) \Rightarrow \ \mathsf{Reward}$ for continued tracking of known targets

Combine rewards via convex sum:

$$\max_{a} \ \left\{ \alpha R_{\mathrm{Track}}(a) + (1-\alpha) R_{\mathrm{Search}}(a) \right\}$$
 where $\alpha \in [0,1]$

Performance depends on $\alpha \Rightarrow$ Controls trade-off \hookrightarrow Different solutions depending on the value of α

(B)

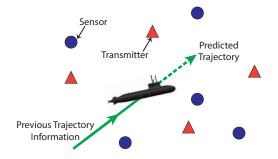
Multi-Objective Framework for choosing

Maximising rewards:

- $\blacksquare R_{\rm Search}(a) \Rightarrow {\rm \ Reward \ for \ searching \ to \ detect \ unknown \ targets}$
- $\blacksquare \ R_{\mathsf{Track}}(a) \Rightarrow \ \mathsf{Reward}$ for continued tracking of known targets

Combine rewards via convex sum:

$$\max_{a} \{\alpha R_{\mathsf{Track}}(a) + (1-\alpha)R_{\mathsf{Search}}(a)\}$$

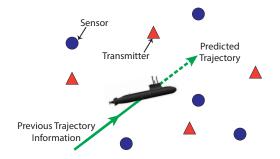

where $\alpha \in [0,1]$

Pareto Optimality:

A point is Pareto optimal if there is no other point that can improve one objective without degrading the other.

Overview Track Reward Search Reward

Tracking Reward

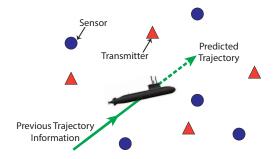

Given previous tracking:

 $\, \hookrightarrow \,$ Measure the gain in tracking information from action a

▶ < ∃ >

Overview Track Reward Search Reward

Tracking Reward


Approximate information matrix:

$$\mathsf{Single track:} \qquad \mathsf{trace} \Bigg[\mathbf{J}_{\mathsf{Predict}} + \sum_{i \in \mathcal{R}} P_d^i(a) \mathbf{J}_{\mathsf{Measure}}^i(a) \Bigg]$$

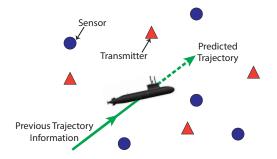
Trace of only the positional elements of information matrix $P_d^i(a)$ Expected probability of detecting track

Overview **Track Reward** Search Reward

Tracking Reward

Predicted Information Matrix:

 $\mathbf{J}_{\mathsf{Predict}} = \left[\mathbf{F}_{k-1}\mathbf{P}_{k-1}\left[\mathbf{F}_{k-1}\right]^{\mathsf{T}}\right]^{-1}$ Propagation of error covariance due to motion model


where \mathbf{F}_{k-1} is the Jacobian of $f(\mathbf{x}_{k-1})$ and \mathbf{P}_{k-1} is the error covariance from tracker

< ∃ > < ∃ >

8 / 17

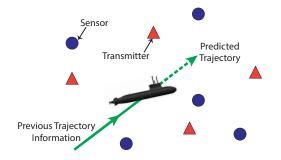
Overview Track Reward Search Reward

Tracking Reward

Measurement Information Matrix:

$$\underbrace{\mathbf{J}_{\mathsf{Measure}} = \begin{bmatrix} \mathbf{H}_k^i(a) \end{bmatrix}^{^{\mathrm{T}}} \begin{bmatrix} \mathbf{R}_k^i(a) \end{bmatrix}^{-1} \mathbf{H}_k^i(a)}_{\mathsf{Gain in information from action}}$$

where $\mathbf{H}_k^i(a)$ is the Jacobian of $h_a(\mathbf{x}_{k-1})$ and $\mathbf{R}_k^i(a)$ is the measurement covariance


590

8 / 17

- 4 ∃ ▶

Overview Track Reward Search Reward

Tracking Reward

Multiple tracks:

$$R_{\mathsf{Track}}(a) = \sum_{\tau=1}^{T} \omega_{\tau} \operatorname{trace} \left[\mathbf{J}_{\mathsf{Predict}}^{\tau} + \sum_{i \in \mathcal{R}} P_{d}^{i,\tau}(a) \mathbf{J}_{\mathsf{Measure}}^{i,\tau}(a) \right]$$

 $\omega_{ au} \Rightarrow$ Normalised weights ($\propto 1/$ existence probability)

- ∢ ⊒ →

Overview Track Reward Search Reward

Search Reward

Reduction of the probability of undetected targets in sonar field

(B)

Overview Track Reward Search Reward

Search Reward

Reduction of the probability of undetected targets in sonar field Modelling this probability^[1]:

- Define Threat Map $P_{T,k} \Rightarrow$ Discrete 2D grid of probabilities
- Probabilities evolve over time
 - Increases \Rightarrow Drift & diffusion of undetected targets
 - $\blacksquare Decreases \Rightarrow Transmitters emits a ping$

[1] D. Krout el al., 'Probability of target presence for multistatic sonar ping sequencing', IEEE J. Ocean. Eng., 2009.

Overview Track Reward Search Reward

Search Reward

Reduction of the probability of undetected targets in sonar field Drift & diffusion process:

- Matrix $G \Rightarrow$ Probability of targets entering from adjacent cells
- Update to Threat Map \Rightarrow Filter $P_{T,k}$ with G
- \blacksquare Pre-calculate G using Monte-Carlo simulations
- e.g. for a 60 s interval, grid size of 1 km, uniformly distributed target speed between 0 and 10 knots

$$G = \begin{bmatrix} 0.0036 & 0.0582 & 0.0036 \\ 0.0582 & 0.7526 & 0.0582 \\ 0.0036 & 0.0582 & 0.0036 \end{bmatrix}$$

Overview Track Reward Search Reward

Search Reward

Reduction of the probability of undetected targets in sonar field Transmitting a ping:

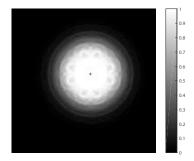
Apply Bayesian update at each cell of $P_{T,k}$

$$P_{T,k}(\mathbf{x}, a) = \frac{(1 - P_d(\mathbf{x}, a))P_{T,k-1}(\mathbf{x})}{(1 - P_d(\mathbf{x}, a))P_{T,k-1}(\mathbf{x}) + (1 - P_{\mathsf{fa}}(1 - P_{T,k-1}(\mathbf{x})))}$$

- $P_d(\mathbf{x}, a)$ is the probability a target is detected after action a
- P_{fa} is the false alarm probability
- $\mathbf{x} = (x, y)$ is the 2D grid point

A B < A B </p>

Overview Track Reward Search Reward


Search Reward

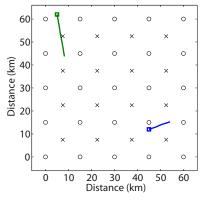
Reduction of the probability of undetected targets in sonar field Obtaining $P_d(\mathbf{x}, a)$:

Generate probabilities using Monte-Carlo simulations and the realistic simulator (BRISE)

e.g.

- $\blacksquare~160~\times~160~\text{km}$ area
- \blacksquare 1km \times 1km grid resolution
- 5 \times 5 transmitter grid
- 6×6 receiver grid
- Buoy separation = 15km
- FM, 1 kHz waveform with 2 s duration.

Overview Track Reward Search Reward

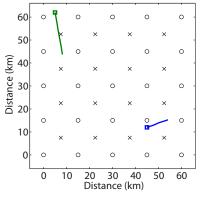

Search Reward

Reduction of the probability of undetected targets in sonar field and finally...

$$R_{\mathsf{search}}(a) = \sum_{\mathbf{x}} P_{T,k-1}(\mathbf{x}) - P_{T,k}(\mathbf{x},a)$$

(B)

Analysis of Scheduler - Set Up


'x' = Transmitters, 'o' = Receivers

Set-up:

- 4 × 4 transmitter grid
- 5 × 5 receiver grid
- Buoy separation = 15km
- 50 Minute Scenario
- 1 transmission/minute
- Blue target present for whole duration
- Green target appears after 10 minutes

 $\begin{array}{rcl} \mbox{Realistic measurements} & \Longrightarrow & \mbox{Bistatic Range Independent Signal Excess (BRISE)} \\ & & \mbox{simulation environment} & & \mbox{abs} & \mbox{a$

Analysis of Scheduler - Set Up

'x' = Transmitters, 'o' = Receivers

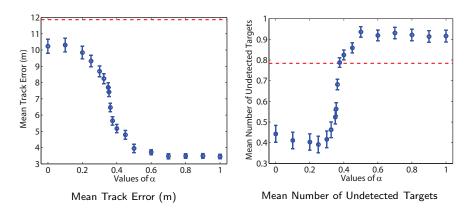
Set-up:

- 4 × 4 transmitter grid
- 5 × 5 receiver grid
- Buoy separation = 15km
- 50 Minute Scenario
- 1 transmission/minute
- Blue target present for whole duration
- Green target appears after 10 minutes

Analyse the performance of the scheduler as α varies

Analysis of Scheduler - Demo

$$\alpha = 0.35$$

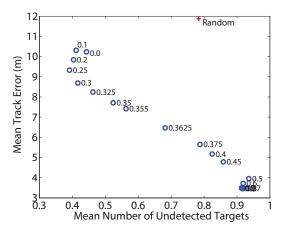

크

Analysis of Scheduler - Demo

$$\alpha = 0.35$$

크

Analysis of Scheduler - Results



 $\begin{array}{l} {\sf Error \ bars} = 95\% \ {\sf confidence \ intervals} \ {\sf for \ the \ estimated \ values} \\ {\sf Red \ dashed \ line} = {\sf Performance \ from \ random \ scheduling} \end{array}$

Values averaged over 300 Monte-Carlo simulations and every transmission

Analysis of Scheduler - Results

Pareto-esque Frontier:

Values averaged over 300 Monte-Carlo simulations and every transmission

Analysis of Scheduler - Transmitter Choice

2D histogram showing the proportion of waveforms transmitted

3

Analysis of Scheduler - Transmitter Choice

2D histogram showing the proportion of waveforms transmitted

3

Conclusions

Introduced scheduling of multistatic sonobuoy fields

- \blacksquare Search \implies Detect targets that are unknown
- Track ⇒ Accurately track known targets
- Presented multi-objective framework for scheduling
 - Each task is treated as a separate objective
 - Objectives combined via weighted sum
 - \blacksquare Weight α controls priority placed on each objective
- Analysed proposed scheduling via realistic simulations
 - \blacksquare Demonstrated trade-off between search and track as α varies
 - Trade-off characterised in terms of points on the Pareto front

The End

Thank you for listening

Gilliam et al. Scheduling Multistatic Sonobuoy Fields

୬ ଏ (୦ 17 / 17

э

∃ ► < ∃ ►</p>