

OPTIMAL POOLING OF COVARIANCE MATRIX ESTIMATES ACROSS MULTIPLE CLASSES

Elias Raninen and Esa Ollila at the Department of Signal Processing and Acoustics, Aalto University, Finland Contact: elias.raninen@aalto.fi and esa.ollila@aalto.fi

PROBLEM FORMULATION

- \bullet Consider data from K distinct classes (populations).
- Let $\{\mathbf{x}_{k,i}\}_{i=1}^{n_k}$ denote the data set of the kth class.
- ullet Our aim is to estimate the $p \times p$ covariance matrices,

$$\mathbf{\Sigma}_k = \mathbb{E}[(\mathbf{x}_k - \mathbb{E}[\mathbf{x}_k])(\mathbf{x}_k - \mathbb{E}[\mathbf{x}_k])^{\top}], \quad k = 1, \dots, K,$$

where x_k denotes a random vector from the kth class.

ullet The sample covariance matrix (SCM) of class k is

$$\mathbf{S}_k = \frac{1}{n_k - 1} \sum_{i=1}^{n_k} (\mathbf{x}_{k,i} - \overline{\mathbf{x}}_k) (\mathbf{x}_{k,i} - \overline{\mathbf{x}}_k)^\top,$$

where $\overline{\mathbf{x}}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_{k,i}$.

- If $p \approx n_k$ or $p > n_k$, regularization of the SCM is needed to reduce the variance and to ensure positive definiteness.
- A natural regularization target is the pooled SCM.

We are interested in a regularized SCM for class k:

$$\hat{\mathbf{\Sigma}}_k(\beta) = \beta \mathbf{S}_k + (1 - \beta) \mathbf{S},$$

where $\beta \in [0, 1]$, and the regularization target S is the pooled (average) SCM:

$$\mathbf{S} = \sum_{k=1}^K \pi_k \mathbf{S}_k, \quad ext{where} \quad \pi_k = rac{n_k}{\sum_{j=1}^K n_j}.$$

Goal: determine the optimal regularization level,

$$\beta_k^{\star} = \underset{\beta \in [0,1]}{\operatorname{arg min}} \mathbb{E} [\|\hat{\boldsymbol{\Sigma}}_k(\beta) - \boldsymbol{\Sigma}_k\|_{\mathrm{F}}^2].$$

Solution:

$$\beta_k^{\star} = \frac{(1 - \pi_k) \operatorname{tr} \left(\mathbf{\Sigma}_k^2 \right) - \pi_k \mathbb{E} \left[\operatorname{tr} \left(\mathbf{S}_k^2 \right) \right] + \delta_k}{(1 - 2\pi_k) \mathbb{E} \left[\operatorname{tr} \left(\mathbf{S}_k^2 \right) \right] + \delta_k}, \quad (1)$$

where
$$\delta_k = \sum_j \pi_j^2 \mathbb{E} \left[\operatorname{tr} \left(\mathbf{S}_j^2 \right) \right] - 2 \sum_{j=1, j \neq k}^K \pi_j \operatorname{tr} \left(\mathbf{\Sigma}_k \mathbf{\Sigma}_j \right) + \sum_{i \neq j} \pi_i \pi_j \operatorname{tr} \left(\mathbf{\Sigma}_i \mathbf{\Sigma}_j \right).$$

We need to estimate:

$$\operatorname{tr}(\mathbf{\Sigma}_{i}\mathbf{\Sigma}_{j}),\,i\neq j,\,\mathbb{E}\left[\operatorname{tr}\left(\mathbf{S}_{k}^{2}\right)\right]$$
, and $\operatorname{tr}(\mathbf{\Sigma}_{k}^{2})$.

ESTIMATION OF PARAMETERS

- Assume $\{\mathbf{x}_{i,k}\}_{k=1}^K$, $\forall k$, are from (unspecified) elliptical distributions with finite 4th order moments.
- A consistent estimate of tr $(\Sigma_i \Sigma_j)$, $i \neq j$, is tr $(S_i S_j)$.
- By using Corollary 1 from [1], one can show that

$$\mathbb{E}\left[\operatorname{tr}\left(\mathbf{S}_{k}^{2}\right)\right] = p\eta_{k}^{2}\left(\tau_{1}(p+\gamma_{k}) + (\tau_{2}+1)\gamma_{k}\right),\,$$

where $\tau_1 = (n_k - 1)^{-1} + \kappa_k / n_k$ and $\tau_2 = \kappa_k / n_k$.

- \circ The *elliptical kurtosis*, $\kappa_k = (1/3) \cdot \{\text{excess kurtosis}\}$, is estimated by the average elliptical sample kurtosis of the variables.
- \circ The *scale*, $\eta_k = \operatorname{tr}\left(\mathbf{\Sigma}_k\right)/p$, is estimated by $\hat{\eta}_k = \operatorname{tr}\left(\mathbf{S}_k\right)/p$.
- o The sphericity, $\gamma_k = p \operatorname{tr} \left(\mathbf{\Sigma}_k^2 \right) / \operatorname{tr} \left(\mathbf{\Sigma}_k \right)^2$, is estimated by [2]

$$\hat{\gamma}_{\mathbf{sgn},k} = p \operatorname{tr}\left(\mathbf{S}_{\mathbf{sgn},k}^2\right) - \frac{p}{n_k},$$

where the sample sign covariance matrix is

$$\mathbf{S}_{\mathbf{sgn},k} = \frac{1}{n_k} \sum_{i=1}^{n_k} \frac{(\mathbf{x}_{k,i} - \hat{\boldsymbol{\mu}}_k)(\mathbf{x}_{k,i} - \hat{\boldsymbol{\mu}}_k)^\top}{\|\mathbf{x}_{k,i} - \hat{\boldsymbol{\mu}}_k\|^2},$$

and $\hat{\boldsymbol{\mu}}_k = \arg\min_{\boldsymbol{\mu}} \sum_{i=1}^{n_k} \|\mathbf{x}_{k,i} - \boldsymbol{\mu}\|$.

- An estimate of tr (Σ_k^2) is obtained by $p\hat{\gamma}_{sgn,k}\hat{\eta}_k^2$.
- As the final estimate of β_k^* , we use $\max\{0, \min\{1, \hat{\beta}_k\}\}$.
- We estimate $\hat{\beta}_k$ for each class k, and denote the method by **Prop 1**.

SIMULATION SET-UPS

1.
$$\Sigma_k = k\mathbf{I}$$
.

2.
$$(\Sigma_k)_{ij} = k\rho_k^{|i-j|}$$
, where $\rho_1 = -0.6$, $\rho_2 = -0.2$, $\rho_3 = 0.2$, and $\rho_4 = 0.6$.

- K = 4, p = 20, $n_k = 10k$, and $n = \sum_k n_k = 100$.
- The data was Student's t_{ν} -distributed with $\nu = 10$.
- $\mu_1 = 0$, and for the classes k = 2, 3, and 4, $||\mu_k|| = 1 + k$ in orthogonal directions.
- 300 Monte-Carlo trials.

MSE PERFORMANCE

The empirical NMSE, $\tilde{L}_k = \text{Ave} \|\hat{\Sigma}_k - \Sigma_k\|_F^2 / \|\Sigma_k\|_F^2$, for the set-ups 1 and 2 (from top to down). LB denotes the lower bound and Oracle uses β_k^{\star} from (1). Standard deviations are in parenthesis.

24 (1.07)
40 (1.23)
29 (1.06)
32 (2.38)
95 (1.94)
63 (0.68)
81 (0.90)
68 (0.72)
01 (2.71)
07 (1.36)

APPLICATION IN CLASSIFICATION

• In discriminant analysis, any new observation \mathbf{x} is assigned to class \hat{k} by the rule:

$$\hat{k} = \arg\min_{k} (\mathbf{x} - \bar{\mathbf{x}}_k)^{\top} \hat{\boldsymbol{\Sigma}}_k^{-1} (\mathbf{x} - \bar{\mathbf{x}}_k) + \log |\hat{\boldsymbol{\Sigma}}_k|.$$

• In **RDA** [3], $\hat{\Sigma}_k(\beta)$ is further regularized towards scaled identity by

$$\hat{\boldsymbol{\Sigma}}_k(\alpha,\beta) = \alpha \hat{\boldsymbol{\Sigma}}_k(\beta) + (1-\alpha) \left(\operatorname{tr}(\hat{\boldsymbol{\Sigma}}_k(\beta)) / p \right) \mathbf{I}, \quad (2)$$

and $\alpha, \beta \in [0, 1]$ are common across classes and chosen via cross-validation.

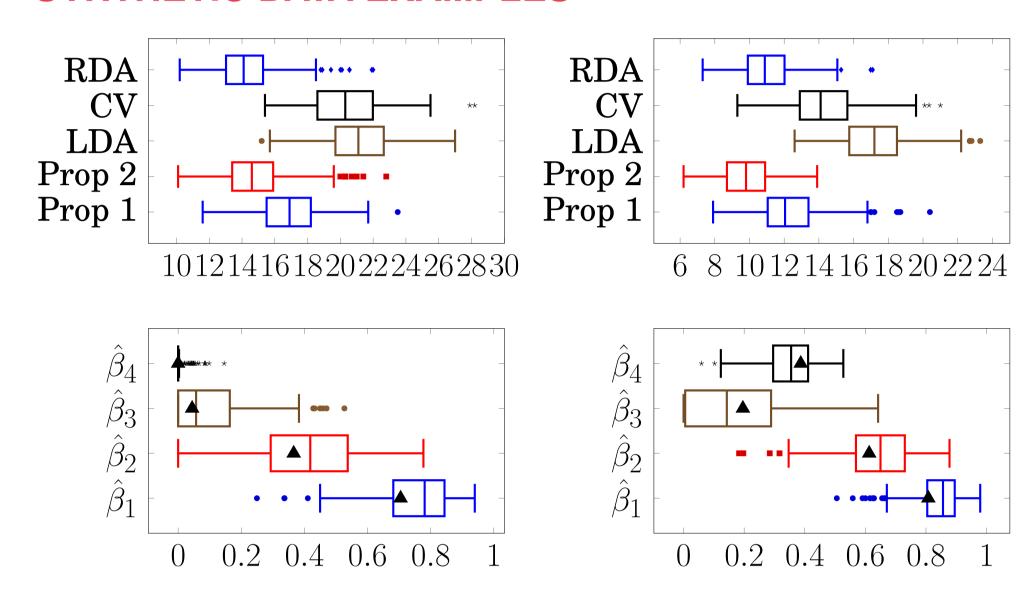
• We applied (2) to our estimator by using

$$\hat{\alpha}_k = \max \left\{ 0, \frac{\hat{\gamma}_k - 1}{\hat{\gamma}_k - 1 + (\hat{\kappa}_k(2\hat{\gamma}_k + p) + \hat{\gamma}_k + p)/n_k} \right\}$$

from [4]. We denote this estimator by **Prop 2**.

- CV is the RDA estimator in (2) with fixed $\alpha = 1$.
- LDA uses the pooled SCM.
- Note: Prop 1 and Prop 2 are computationally significantly more efficient than CV and RDA since no cross-validation is needed.

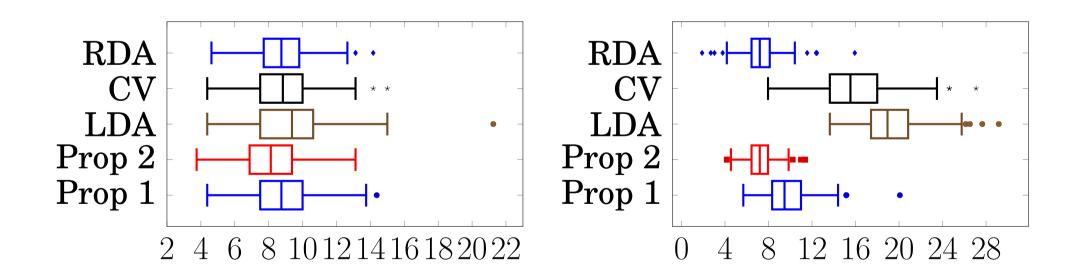
SYNTHETIC DATA EXAMPLES



Boxplots of the misclassification rate $\times 100$ and $\hat{\beta}_k$ for the set-ups 1 (left) and 2 (right). The black triangles denote β_k^{\star} .

REAL DATA EXAMPLES

- Glass data set [5]: p = 9, $n_1 = 51$ (window glass) and $n_2 = 163$ (non-window glass).
- Ionosphere data set [5]: p=32, $n_1=126$ (bad radar return) and $n_2=225$ (good radar return).
- A fraction 1/4 of the samples from each class were used as training data.



Boxplots of the misclassification rate $\times 100$ for the glass data (left) and the ionosphere data (right).

REFERENCES

- [1] David E. Tyler, "Radial estimates and the test for sphericity," *Biometrika*, vol. 69, no. 2, pp. 429–436, 1982.
- [2] Teng Zhang and Ami Wiesel, "Automatic diagonal loading for Tyler's robust covariance estimator," in *SSP*, 2016, pp. 1–5.
- [3] Jerome H. Friedman, "Regularized discriminant analysis," *Journal of the American Statistical Association*, vol. 84, no. 405, pp. 165–175, 1989.
- [4] Esa Ollila, "Optimal high-dimensional shrinkage covariance estimation for elliptical distributions," in EUSIPCO, Kos, Greece, 2017, pp. 1639–1643.
- [5] "UCI machine learning repository," http://archive.ics.uci.edu/ml.