EXPLOITING EXPLICIT MEMORY INCLUSION FOR ARTIFICIAL BANDWIDTH EXTENSION

Pramod Bachhav, Massimiliano Todisco and Nicholas Evans **EURECOM**, France

Introduction	
traditional telephony infrastructure is typically limited to a bandwidth of 0.3-3.4 kHz, referred as narrowband (NB)	
unvoiced phonemes exhibit significant information beyond NB	
wider bandwidths generally correspond to higher quality speech	
artificial bandwidth extension (ABE) methods estimate missing highband (HB) components at 3.4-8kHz	
use of dynamic information or <i>memory</i> to improve ABE performance is common and can be captured using back- end regression models or via front-end features	1
memory inclusion via delta features for ABE has been investigated thoroughly [1,2] via information theoretic analysis	
a quantitative analysis of the benefit of <i>explicit</i> memory from neighboring frames, without significant increases to complexity and latency is missing	1
Contributions	
assessment of <i>explicit</i> memory through information theoretic analysis	
<i>explicit</i> memory inclusion for ABE without affecting complexity of a standard regression model	
application of principal component analysis as a dimensionality reduction transform	
Mutual information	
correlation between NB and HB features is usually measured using mutual information (MI)	
the mutual information between two continuous random variables <i>X</i> and <i>Y</i> with joint probability density function (PDF) $f_{XY}(x, y)$ is defined according to:	
$\int \int \int f_{YY}(x,y) $	
$I(X;Y) = \iint f_{XY}(x,y) \log_2\left(\frac{f_X(x,y)}{f_X(x)f_Y(y)}\right) dxdy$	
$I(X;Y) = \iint f_{XY}(x,y) \log_2\left(\frac{f_{XY}(x,y)}{f_X(x)f_Y(y)}\right) dxdy$ the integral can be written as an expectation approximated by the sample mean over <i>K</i> samples as follows:	
$I(X;Y) = \iint f_{XY}(x,y) \log_2\left(\frac{f_{XY}(x,y)}{f_X(x)f_Y(y)}\right) dxdy$ the integral can be written as an expectation approximated by the sample mean over <i>K</i> samples as follows: $I(X;Y) \approx \frac{1}{K} \sum_{k=1}^{K} \log_2\left(\frac{f_{XY}(x_k,y_k)}{f_X(x_k)f_Y(y_k)}\right)$	
$I(X;Y) = \iint f_{XY}(x,y) \log_2\left(\frac{f_{XY}(x,y)}{f_X(x)f_Y(y)}\right) dxdy$ the integral can be written as an expectation approximated by the sample mean over <i>K</i> samples as follows: $I(X;Y) \approx \frac{1}{K} \sum_{k=1}^{K} \log_2\left(\frac{f_{XY}(x_k,y_k)}{f_X(x_k)f_Y(y_k)}\right)$ the joint PDF $f_{XY}(x,y)$ is usually modelled using a Gaussian mixture model (GMM)	

Emails: {bachhav, todisco, evans}@eurecom.fr

Presented by Pramod Bachhav at 43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018, Calgary, Canada.

Experimental setup and results

Database: TIMIT database divided into training (3696 utterances) and test (1344 utterances) sets.

□ NB features: 10 log Mel filter (logMFE) coefficients; HB features: 10 linear prediction (LP) coefficients including LP gain

□ Mapping: GMM regression [3] (using 128 components)

 \Box Proposed ABE system with *memory* M_{δ} uses δ neighboring frames (NB features - $\hat{X}_{t,pca,\delta}^{NB}$)

D Baseline B1 uses static NB features \hat{X}_t^{NB}

□ Baseline B2 uses NB and HB features formed by appending 5 static features with corresponding 5 second order delta coefficients. (A variant of the approach presented in [2])

ABE nethod	d _{RMS-LSD}	d _{COSH}	MOS-LQO
B1	9.2 (1.2)	2.4 (0.7)	2.4
B2	10.1 (1.2)	3.6 (1.2)	2.2
M ₁	8.2 (0.9)	2.2 (0.6)	2.8
M ₂	8.1 (0.9)	2.1 (0.6)	2.9
M_3	8.2 (0.9)	2.2 (0.7)	2.8

Objective assessment results. Lower values of $d_{\text{RMS-LSD}}$ and d_{COSH} indicate better performance whereas as higher MOS-LQO indicates better quality.

A comparison of true WB LP gain \hat{g}_{true}^{WB} to estimated WB LP gain \hat{g}^{WB} for systems M_2 and B1

- theoretic analysis
- Future Work

INTERSPEECH, 2008

speech using GMM based transformation," in Proc. of ICASSP, 2000 [4] P. Jax and P. Vary, "Feature selection for improved bandwidth extension of speech signals", in Proc. of ICASSP, 2004

Comparison $\mathbf{B} \to \mathbf{A}$	CMOS
$M_2 {\rightarrow} \text{NB}$	0.69
$M_2 \to \text{B1}$	0.51
$M_2 \rightarrow WB$	-0.78

Subjective assessment results in terms of CMOS. Files used for the subjective evaluation are available at http://audio.eurecom.fr/content/media

Comparison	logMFE
$I(X_t; Y_t)$	1.24
$I(X_{t,pca_2}^{NB}; Y_t)$	1.34

Mutual information assessment results

Conclusions and future work

• explicit memory inclusion for ABE is presented without significant impact on computational complexity

□ use of PCA is as a dimensionality reduction transform

D potential of the *memory* is demonstrated through information

□ *memory* produces bandwidth-extended speech signals with better speech quality

□ investigation of dimensionality reduction techniques designed to preserve speech quality rather than feature variance

Selected References

[1] A. Nour-Eldin et al., "The effect of memory inclusion on mutual information between speech frequency bands", Proc. of ICASSP, 2006 [2] A. Nour-Eldin and P. Kabal, "Mel-frequency cepstral coefficientbased bandwidth extension of narroband speech", in Proc. of

[3] K.-Y. Park and H. Kim, "Narrowband to wideband conversion of