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Egocentric (aka first-person) videos

• Egocentric videos aka first-person videos (FPVs)
Captured by a head-mount camera
Different from the usual third-person videos (TPVs)
• Unstable due to head motion

TPV
• Stable background
• With less noise

FPVs
• Background shifts
• Blurs due to head motion
• Only parts of objects
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• Human gaze
• Scan the scene by leaping
between salient regions

• Saliency detection
• Has dealt with TPVs

Gaze detection

• Existing methods
• Itti et al. (TPAMI 1998): The classic saliency detection method based on feature
integration (ITTI)

• Harel et al. (NIPS 2007): Graph-based visual saliency (GBVS).
• Li et al. (CVPR 2015): Weighted sparse coding framework based on !" norm (WSCF).
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• We propose a gaze prediction, saliency detection algorithm that
works well on FPVs



Proposed framework
Simplified procedure
1. Divide an image into superpixels
2. Extract a feature vector for each superpixel
• Combine intensity averages vector !" and color histogram vector !#

3. Sparsely reconstruct the feature vector by a saliency dictionary, and 
evaluate the reconstruction error
• Saliency dictionary collects features for salient superpixels; it is iteratively 

updated
4. Identify superpixels whose reconstruction error is smaller than a 

threshold as salient regions
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• Combine two features by canonical correlation analysis (CCA)
• Use coupled RGB and Lab color spaces as color descriptors.
• Generate two feature vectors for all superpixels: An averaged feature vector

and a color histogram feature vector.
• Perform CCA to extract common features

Feature extraction

Averaging feature

Low-dimensional common space

Color histogram feature                      
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• Gaze prediction based on sparse coding (GPSC)
• Monitor the reconstruction errors of sparse coding with a saliency dictionary.
• Sparse reconstruction error for superpixel !

• The saliency value for superpixel r

• "#$%(!) is a center-bias prior

Sparse modeling

2. FRAMEWORK AND FORMULATION

To predict gaze in egocentric videos captured from real-world
noisy environments, our approach uses saliency dictionaries
built for superpixels. We build saliency dictionaries though
sparse modeling with the color histogram of the frame image
and the averaged saliency map of two neighbors frames in
videos.

2.1. Feature Extraction by CCA

Color is the most intuitive feature to distinguish different re-
gions. We use coupled RGB and Lab color spaces as color de-
scriptors that can improve the accuracy of saliency maps [5].
We generate two feature matrices for all superpixels: An av-
eraged feature matrix Fa = RC⇥N and a color histogram
feature matrix Fh = RC0⇥N , where N is the number of su-
perpixels, C is the averaged feature dimensionality, and C 0 is
the color histogram feature dimensionality.

The averaged feature Fa performs well when the scene is
composed of objects with simple color and textures but is less
robust when the foreground and background contain highly
complex textures. This is because averaging over all pixels
loses information that characterizes color variations within
each superpixel. The color histogram Fh is suitable for han-
dling scenarios where the scene contains highly textured ob-
jects.

Moreover, to combine these different types of features,
we extract common features between the feature matri-
ces Fa and Fh by canonical correlation analysis (CCA),
which finds linear projections of matrices Fa and Fh max-
imizing the correlation with each other (Fig. 1). Features
generated by CCA can reduce the computational complex-
ity since the dimensionality of Fa and Fh becomes eC =

min(rank(Fa), rank(Fh)), which is less than C and C 0.
CCA is formulated as the following minimization problem.

min

Pa,Ph

kPaFa �PhFhk2F, (1)

where Pa 2 R eC⇥C and Ph 2 R eC⇥C0
are linear projectors

from the averaged feature domain and the color histogram
domain, respectively, to the common space with the same di-
mension. The detailed derivation can be found in [6]. We es-
timate optimal projection matrices Pa and Ph by solving an
eigenvalue problem. Once the projection matrices Pa and Ph

have been learned, we can utilize these matrices for project-
ing data vectors from averaging domain and color histogram
domain into the eC-dimensional common space where the rel-
evant pairs of information get close [7, 8].

The common space averaged features FC
a = PaFa and

the common space color histogram features FC
h = PhFh are

concatenated to be the video feature matrix F = [FC
a ,F

C
h ].

Fig. 1. Graphical model for canonical correlation analysis.

2.2. Sparse Modeling for Gaze Prediction

Our proposed sparse coding based gaze prediction framework
calculates saliency from the feature matrix by monitoring the
reconstruction errors from a saliency dictionary. We stand on
existing studies that show non-saliency regions can be repre-
sented by a sparsely coded dictionary [4, 9]. We use the error
measure to refine the foreground superpixels and to identify
foreground saliency ones.

Saliency detection based on sparse coding [9] identifies
salient regions as those having high reconstruction errors with
background templates dictionary. The dictionary D 2 R eC⇥K

comprises K bases (or atoms) representing feature vectors for
background superpixels. The sparse reconstruction error for
superpixel r 2 {1, . . . , N} is defined to be

✏⇤r = kfr �Dh⇤
rk22, (2)

where sparse coefficients h⇤
r 2 RK are found by

h⇤
r = argmin

h
kfr �Dhk22 + �khk1. (3)

Here, � > 0 is a regularization parameter. Thanks to the
sparsity induced from the l1 norm, the sparse reconstruction
errors are robust to complicated background [9].

We propose the l0 norm to be a better sparsity measure for
detecting saliency, and define our sparse reconstruction error
to be

✏?r = kfr �Dh?
rk22, (4)

h?
r = argmin

h
kfr �Dhk22 s.t. khk0  l. (5)

The l1 norm optimization problem [10] has been developed
as a relaxation of the original l0 problem, and it is known that
l1 solutions are not as sparse as l0 solutions thus they may
not induce adequate sparsity when applied to certain applica-
tions [11, 12]. Although the l0 norm optimization problem is
generally NP-hard [13], there are practical methods to obtain
approximate solutions such as matching pursuit (MP) [14] or
orthogonal matching pursuit (OMP) [15]. In this paper, we
employ OMP to solve the sparse coding problem.

The sparsity parameter l in (5) has an intuitive interpreta-
tion as the number of atoms and can be adjusted to measure
the area of gaze prediction. Once we fix the l parameter, we
will have consistent results for different videos. In contrast,
the l1 norm does not count the number of atoms and the l1
solutions are subject to atom count variability over different
videos even with a fixed parameter �.
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Fig. 2. The AUC scores of GPSC with different values of the
l0 sparsity.

Then we compute the saliency value Sal(r) for superpixel
r from the reconstruction error as follows.

Sal(r) = Sal+(r) · Sal⇤(✏?r), (6)
where Sal+(r) is the object-bias center prior defined in [16]
and Sal⇤(✏?r) = exp(�✏?r) depends on the dictionary type [4].
We average the saliency values from two temporally adjacent
frames to obtain final gaze predictions.

The saliency dictionary D is constructed by starting from
an initial dictionary and repeatedly refining it [4]. The initial
dictionary is a set of feature vectors from superpixels in non-
salient regions. Non-salient regions are defined to be those
whose boundary connectivity scores are non-zero. The con-
nectivity score for superpixel r measures how r is connected
to neighbor superpixels sharing the boundary with r; the con-
nectivity score is high if the neighbors belong to other regions
(i.e. many boundaries) and low if the neighbors are from the
same region (i.e. no boundaries) [17]. In the refinement state,
the dictionary is updated to be a set of feature vectors whose
Sal values are higher than the mean value of Sal .

2.3. Gaze Prediction Algorithm

We present our proposed algorithm: Gaze prediction based on
sparse coding (GPSC) in Algorithm 1 below.

Algorithm 1 Gaze prediction based on sparse coding (GPSC)
1: Compute the averaged feature matrix Fa and the color

histogram feature matrix Fh for frame i.
2: Obtain Fc

a and Fc
h by projecting to the common CCA

space.
3: Built an initial saliency dictionary D.
4: repeat
5: Calculate the saliency values by (6).
6: Update the saliency dictionary D by selecting feature

vectors whose saliency values were larger than the av-
erage: D {fr | Sal(r) > mean(Sal(r))}.

7: until convergence
8: From Sal for all the frames, obtain gaze prediction by

averaging the saliency values from two adjacent frames.
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Fig. 3. ROC curves for sessions 1–4 in video 001.
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Fig. 4. ROC curves for videos 012, 013, 014, and 016.

3. EXPERIMENTS

We use the GTEA Gaze dataset [18], which has recorded the
egocentric video together with gaze points obtained from eye-
tracking glasses, which are used as the ground truth for gaze
prediction. There are 17 egocentric videos in the dataset.
Video 001 captures a person cooking sandwiches and con-
tains 30 sessions, each of which is associated with an action
such as “take bread” or “take knife.”

We compare the results by our proposed algorithm GPSC
with three competing methods: two traditional image saliency-
based methods, ITTI [2] and GBVS [3], and a l1 sparse
modeling method WSCF [4]. We use the receiver operating
characteristic (ROC) curve and the area under curve (AUC)
to measure the consistency between a predicted gaze map and
the ground truth gaze points, which are widely used in the
saliency detection literature [19].
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Fig. 2. The AUC scores of GPSC with different values of the
l0 sparsity.

Then we compute the saliency value Sal(r) for superpixel
r from the reconstruction error as follows.

Sal(r) = Sal+(r) · Sal⇤(✏?r), (6)
where Sal+(r) is the object-bias center prior defined in [16]
and Sal⇤(✏?r) = exp(�✏?r) depends on the dictionary type [4].
We average the saliency values from two temporally adjacent
frames to obtain final gaze predictions.

The saliency dictionary D is constructed by starting from
an initial dictionary and repeatedly refining it [4]. The initial
dictionary is a set of feature vectors from superpixels in non-
salient regions. Non-salient regions are defined to be those
whose boundary connectivity scores are non-zero. The con-
nectivity score for superpixel r measures how r is connected
to neighbor superpixels sharing the boundary with r; the con-
nectivity score is high if the neighbors belong to other regions
(i.e. many boundaries) and low if the neighbors are from the
same region (i.e. no boundaries) [17]. In the refinement state,
the dictionary is updated to be a set of feature vectors whose
Sal values are higher than the mean value of Sal .

2.3. Gaze Prediction Algorithm

We present our proposed algorithm: Gaze prediction based on
sparse coding (GPSC) in Algorithm 1 below.

Algorithm 1 Gaze prediction based on sparse coding (GPSC)
1: Compute the averaged feature matrix Fa and the color

histogram feature matrix Fh for frame i.
2: Obtain Fc

a and Fc
h by projecting to the common CCA

space.
3: Built an initial saliency dictionary D.
4: repeat
5: Calculate the saliency values by (6).
6: Update the saliency dictionary D by selecting feature

vectors whose saliency values were larger than the av-
erage: D {fr | Sal(r) > mean(Sal(r))}.

7: until convergence
8: From Sal for all the frames, obtain gaze prediction by

averaging the saliency values from two adjacent frames.
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Fig. 3. ROC curves for sessions 1–4 in video 001.
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Fig. 4. ROC curves for videos 012, 013, 014, and 016.

3. EXPERIMENTS

We use the GTEA Gaze dataset [18], which has recorded the
egocentric video together with gaze points obtained from eye-
tracking glasses, which are used as the ground truth for gaze
prediction. There are 17 egocentric videos in the dataset.
Video 001 captures a person cooking sandwiches and con-
tains 30 sessions, each of which is associated with an action
such as “take bread” or “take knife.”

We compare the results by our proposed algorithm GPSC
with three competing methods: two traditional image saliency-
based methods, ITTI [2] and GBVS [3], and a l1 sparse
modeling method WSCF [4]. We use the receiver operating
characteristic (ROC) curve and the area under curve (AUC)
to measure the consistency between a predicted gaze map and
the ground truth gaze points, which are widely used in the
saliency detection literature [19].
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• Initial dictionary
• Collect superpixels that are distinct from neighboring superpixels 

(kind of clustering)

• Dictionary updates
• After calculating saliency values, collect superpixels whose saliencies 

are larger than a threshold

Dictionary construction
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Experiments
• Dataset: GTEA Gaze (Fathi et al. ECCV 2012)
• Easy cooking activity captured with Tobii eye-tracking glasses
• True gaze information is available
• Consisting of 30 actions

• Evaluation:
• Receiver operating characteristic (ROC) curve
• Area under curve (AUC)

Reaching to milk Taking bread Putting jam
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• Degree of sparsity
• Balances the tradeoff
• Less sparse
• Too few dictionary atoms
• Not much variety

• More sparse
• Too many atoms
• Non-salient regions can 

be reconstructed well

• We use ! = 50

Sparsity control

2. FRAMEWORK AND FORMULATION

To predict gaze in egocentric videos captured from real-world
noisy environments, our approach uses saliency dictionaries
built for superpixels. We build saliency dictionaries though
sparse modeling with the color histogram of the frame image
and the averaged saliency map of two neighbors frames in
videos.

2.1. Feature Extraction by CCA

Color is the most intuitive feature to distinguish different re-
gions. We use coupled RGB and Lab color spaces as color de-
scriptors that can improve the accuracy of saliency maps [5].
We generate two feature matrices for all superpixels: An av-
eraged feature matrix Fa = RC⇥N and a color histogram
feature matrix Fh = RC0⇥N , where N is the number of su-
perpixels, C is the averaged feature dimensionality, and C 0 is
the color histogram feature dimensionality.

The averaged feature Fa performs well when the scene is
composed of objects with simple color and textures but is less
robust when the foreground and background contain highly
complex textures. This is because averaging over all pixels
loses information that characterizes color variations within
each superpixel. The color histogram Fh is suitable for han-
dling scenarios where the scene contains highly textured ob-
jects.

Moreover, to combine these different types of features,
we extract common features between the feature matri-
ces Fa and Fh by canonical correlation analysis (CCA),
which finds linear projections of matrices Fa and Fh max-
imizing the correlation with each other (Fig. 1). Features
generated by CCA can reduce the computational complex-
ity since the dimensionality of Fa and Fh becomes eC =

min(rank(Fa), rank(Fh)), which is less than C and C 0.
CCA is formulated as the following minimization problem.

min

Pa,Ph

kPaFa �PhFhk2F, (1)

where Pa 2 R eC⇥C and Ph 2 R eC⇥C0
are linear projectors

from the averaged feature domain and the color histogram
domain, respectively, to the common space with the same di-
mension. The detailed derivation can be found in [6]. We es-
timate optimal projection matrices Pa and Ph by solving an
eigenvalue problem. Once the projection matrices Pa and Ph

have been learned, we can utilize these matrices for project-
ing data vectors from averaging domain and color histogram
domain into the eC-dimensional common space where the rel-
evant pairs of information get close [7, 8].

The common space averaged features FC
a = PaFa and

the common space color histogram features FC
h = PhFh are

concatenated to be the video feature matrix F = [FC
a ,F

C
h ].

Fig. 1. Graphical model for canonical correlation analysis.

2.2. Sparse Modeling for Gaze Prediction

Our proposed sparse coding based gaze prediction framework
calculates saliency from the feature matrix by monitoring the
reconstruction errors from a saliency dictionary. We stand on
existing studies that show non-saliency regions can be repre-
sented by a sparsely coded dictionary [4, 9]. We use the error
measure to refine the foreground superpixels and to identify
foreground saliency ones.

Saliency detection based on sparse coding [9] identifies
salient regions as those having high reconstruction errors with
background templates dictionary. The dictionary D 2 R eC⇥K

comprises K bases (or atoms) representing feature vectors for
background superpixels. The sparse reconstruction error for
superpixel r 2 {1, . . . , N} is defined to be

✏⇤r = kfr �Dh⇤
rk22, (2)

where sparse coefficients h⇤
r 2 RK are found by

h⇤
r = argmin

h
kfr �Dhk22 + �khk1. (3)

Here, � > 0 is a regularization parameter. Thanks to the
sparsity induced from the l1 norm, the sparse reconstruction
errors are robust to complicated background [9].

We propose the l0 norm to be a better sparsity measure for
detecting saliency, and define our sparse reconstruction error
to be

✏?r = kfr �Dh?
rk22, (4)

h?
r = argmin

h
kfr �Dhk22 s.t. khk0  l. (5)

The l1 norm optimization problem [10] has been developed
as a relaxation of the original l0 problem, and it is known that
l1 solutions are not as sparse as l0 solutions thus they may
not induce adequate sparsity when applied to certain applica-
tions [11, 12]. Although the l0 norm optimization problem is
generally NP-hard [13], there are practical methods to obtain
approximate solutions such as matching pursuit (MP) [14] or
orthogonal matching pursuit (OMP) [15]. In this paper, we
employ OMP to solve the sparse coding problem.

The sparsity parameter l in (5) has an intuitive interpreta-
tion as the number of atoms and can be adjusted to measure
the area of gaze prediction. Once we fix the l parameter, we
will have consistent results for different videos. In contrast,
the l1 norm does not count the number of atoms and the l1
solutions are subject to atom count variability over different
videos even with a fixed parameter �.

1314

9



ROC curves for different actions

Take bread

Take plate bowl

Take knife

Take bread
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AUC scores for different actions
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ROC curves for different people
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AUC scores for different people
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Conclusion
• Gaze prediction on FPVs

• GPSC: CCA-projected features, !" norm

• Achieved good performance overall, but not always

• A good ground to build more, e.g. multi-sensor integration
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